
Liliang Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9181613/publications.pdf Version: 2024-02-01

LILLANC OUVANC

#	Article	IF	CITATIONS
1	Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 2016, 8, 035020.	3.7	652
2	3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomaterials Science and Engineering, 2016, 2, 1743-1751.	2.6	473
3	A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photoâ€crosslinkable Inks. Advanced Materials, 2017, 29, 1604983.	11.1	414
4	Three-dimensional printing of Hela cells for cervical tumor model <i>in vitro</i> . Biofabrication, 2014, 6, 035001.	3.7	413
5	The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication, 2015, 7, 045002.	3.7	240
6	Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science Advances, 2020, 6, .	4.7	156
7	Three-dimensional <i>in vitro</i> cancer models: a short review. Biofabrication, 2014, 6, 022001.	3.7	150
8	Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication, 2015, 7, 044101.	3.7	124
9	Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication, 2012, 4, 025007.	3.7	119
10	Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering. Trends in Biotechnology, 2021, 39, 150-164.	4.9	98
11	3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication, 2015, 7, 015010.	3.7	96
12	Voidâ€Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion. Advanced Functional Materials, 2020, 30, 1908349.	7.8	96
13	In Vitro Angiogenesis of 3D Tissue Engineered Adipose Tissue. Journal of Bioactive and Compatible Polymers, 2009, 24, 5-24.	0.8	83
14	Assembling Living Building Blocks to Engineer Complex Tissues. Advanced Functional Materials, 2020, 30, 1909009.	7.8	76
15	3D printing of photocurable poly(glycerol sebacate) elastomers. Biofabrication, 2016, 8, 045004.	3.7	67
16	Responsive biomaterials for 3D bioprinting: A review. Materials Today, 2022, 52, 112-132.	8.3	64
17	Buoyancyâ€Driven Gradients for Biomaterial Fabrication and Tissue Engineering. Advanced Materials, 2019, 31, e1900291.	11.1	61
18	Mechanical characterization of bioprinted <i>in vitro</i> soft tissue models. Biofabrication, 2013, 5, 045010.	3.7	60

LILIANG OUYANG

#	Article	IF	CITATIONS
19	3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cuâ€Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering. Small, 2022, 18, e2104996.	5.2	52
20	Norbornene-modified poly(glycerol sebacate) as a photocurable and biodegradable elastomer. Polymer Chemistry, 2017, 8, 5091-5099.	1.9	46
21	Biomimetic injectable HUVECâ€adipocytes/collagen/alginate microsphere coâ€cultures for adipose tissue engineering. Biotechnology and Bioengineering, 2013, 110, 1430-1443.	1.7	44
22	3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication, 2018, 10, 044101.	3.7	42
23	Facile Biofabrication of Heterogeneous Multilayer Tubular Hydrogels by Fast Diffusion-Induced Gelation. ACS Applied Materials & Interfaces, 2018, 10, 12424-12430.	4.0	37
24	Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends in Biotechnology, 2022, 40, 891-902.	4.9	35
25	Biomaterial-assisted scalable cell production for cell therapy. Biomaterials, 2020, 230, 119627.	5.7	33
26	Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3108-3124.	2.6	31
27	Review of emerging nanotechnology in bone regeneration: progress, challenges, and perspectives. Nanoscale, 2021, 13, 10266-10280.	2.8	28
28	Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication, 2017, 9, 032001.	3.7	26
29	An integrated cell printing system for the construction of heterogeneous tissue models. Acta Biomaterialia, 2019, 95, 245-257.	4.1	24
30	Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomaterials Science and Engineering, 2020, 6, 2995-3004.	2.6	20
31	Optimizing Bifurcated Channels within an Anisotropic Scaffold for Engineering Vascularized Oriented Tissues. Advanced Healthcare Materials, 2020, 9, e2000782.	3.9	19
32	Tunable Microgelâ€Templated Porogel (MTP) Bioink for 3D Bioprinting Applications. Advanced Healthcare Materials, 2022, 11, e2200027.	3.9	19
33	Stem Cells: Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation (Small 21/2014). Small, 2014, 10, 4310-4310.	5.2	18
34	Roadmap for Additive Manufacturing: Toward Intellectualization and Industrialization. , 2022, 1, 100014.		15
35	Advances in digital light processing of hydrogels. Biomedical Materials (Bristol), 2022, 17, 042002.	1.7	14

36 Advances in 3D Bioprinting. , 2022, 1, 100011.

LILIANG OUYANG

#	Article	IF	CITATIONS
37	Modeling on Microdroplet Formation for Cell Printing Based on Alternating Viscous-Inertial Force Jetting. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	10
38	Study on Microextrusion-based 3D Bioprinting and Bioink Crosslinking Mechanisms. Springer Theses, 2019, , .	0.0	9
39	Polysaccharideâ€Polyplex Nanofilm Coatings Enhance Nanoneedleâ€Based Gene Delivery and Transfection Efficiency. Small, 2022, 18, .	5.2	6
40	Review on biofabrication and applications of heterogeneous tumor models. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2101-2120.	1.3	4
41	3D Bioprinting of Thermal-Sensitive Bioink. Springer Theses, 2019, , 63-80.	0.0	1
42	3D Bioprinting and Bioink: Background. Springer Theses, 2019, , 7-23.	0.0	1
43	Biological Characterization and Applications. Springer Theses, 2019, , 105-125.	0.0	1
44	3D Bioprinting of Non-viscous Bioink. Springer Theses, 2019, , 81-104.	0.0	0
45	3D Bioprinting of Shear-Thinning Self-assembly Bioink. Springer Theses, 2019, , 43-61.	0.0	0