List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/918138/publications.pdf Version: 2024-02-01

Τομλες Stord οελ

#	Article	IF	CITATIONS
1	The Clinical Tumor Lysis Syndrome in a Patient with Mixed Phenotype Acute Leukemia Undergoing Induction with Venetoclax and Azacitidine – a Case Report. Chemotherapy, 2022, , .	1.6	2
2	Tracking Clonal Evolution of Multiple Myeloma Using Targeted Next-Generation DNA Sequencing. Biomedicines, 2022, 10, 1674.	3.2	3
3	Whole-exome sequencing in patients with protein aggregate myopathies reveals causative mutations associated with novel atypical phenotypes. Neurological Sciences, 2021, 42, 2819-2827.	1.9	2
4	Predictive significance of selected gene mutations in relapsed and refractory chronic lymphocytic leukemia patients treated with ibrutinib. European Journal of Haematology, 2021, 106, 320-326.	2.2	2
5	Co-occurrence of unclassified myeloproliferative neoplasm and giant cell arteritis in a patient treated with allogeneic hematopoietic stem cell transplantation: a case report and literature review. Central-European Journal of Immunology, 2021, 46, 121-126.	1.2	1
6	In vivo, ex vivo and in vitro dasatinib activity in chronic lymphocytic leukemia. Oncology Letters, 2021, 21, 285.	1.8	4
7	Epithelial Cells of Deep Infiltrating Endometriosis Harbor Mutations in Cancer Driver Genes. Cells, 2021, 10, 749.	4.1	8
8	Gene Expression Profiling Predicts Sensitivity of Chronic Lymphocytic Leukemia Cells to Dasatinib. HemaSphere, 2021, 5, e514.	2.7	0
9	Results of Polish Adult Leukemia Study Group (PALG) project assessing TP53 mutations with next-generation sequencing technology in relapsed and refractory chronic lymphocytic leukemia patients — an 18-month update. Acta Haematologica Polonica, 2021, 52, 94-102.	0.3	0
10	Differential Regulation of Telomeric Complex by BCR-ABL1 Kinase in Human Cellular Models of Chronic Myeloid Leukemia—From Single Cell Analysis to Next-Generation Sequencing. Genes, 2020, 11, 1145.	2.4	10
11	First familial cases of type 2 congenital erythrocytosis (ECYT2) with a Chuvash pathogenic variant in VHL gene in Poland: example of the clinical utility of next-generation sequencing in diagnostics of orphan diseases. Acta Haematologica Polonica, 2020, 51, 220-225.	0.3	0
12	Wenetoklaks w monoterapii przewlekÅ,ej biaÅ,aczki limfocytowej przed powtórnym przeszczepieniem allogenicznych krwiotwórczych komórek macierzystych. Hematologia, 2020, 11, 95-100.	0.0	0
13	Clonal Hematopoiesis with Somatic Mutations in "AYA" Generation of Patients with Chronic Myeloid Leukemia. Blood, 2020, 136, 23-24.	1.4	0
14	Germline missense NF1 mutation in an elderly patient with a blastic plasmacytoid dendritic cell neoplasm. International Journal of Hematology, 2019, 110, 102-106.	1.6	5
15	Predictive Significance of Selected Gene Mutations Identified Using Next Generation Sequencing in Relapsed and Refractory Chronic Lymphocytic Leukemia Patients Treated with Ibrutinib. Blood, 2019, 134, 5456-5456.	1.4	0
16	ASXL1 Mutations Detectable at Diagnosis May Predict Response to Imatinib in Patients with Chronic Myeloid Leukemia. Blood, 2019, 134, 4148-4148.	1.4	4
17	DNA methylation signature in blood does not predict calendar age in patients with chronic lymphocytic leukemia but may alert to the presence of disease. Forensic Science International: Genetics, 2018, 34, e15-e17.	3.1	13
18	Tyrosine kinase inhibitor–induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors. Blood, 2018, 132, 67-77.	1.4	54

#	Article	IF	CITATIONS
19	The Role of Shelterin Complex and Post-Translational Non-Enzymatic Modification in Telomere Maintenance in Chronic Myeloid Leukemia. Blood, 2018, 132, 5426-5426.	1.4	0
20	Genomic landscape of human erythroleukemia K562 cell line, as determined by next-generation sequencing and cytogenetics. Acta Haematologica Polonica, 2017, 48, 343-349.	0.3	3
21	Mutational Analysis of Recurrent Meningioma Progressing From Atypical to Rhabdoid Subtype. World Neurosurgery, 2017, 97, 754.e1-754.e6.	1.3	9
22	Titin Truncating Variants in Dilated Cardiomyopathy – Prevalence and Genotype-Phenotype Correlations. PLoS ONE, 2017, 12, e0169007.	2.5	63
23	Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. Journal of Clinical Investigation, 2017, 127, 2392-2406.	8.2	64
24	Normal ABL1 is a tumor suppressor and therapeutic target in human and mouse leukemias expressing oncogenic ABL1 kinases. Blood, 2016, 127, 2131-2143.	1.4	32
25	A rare mutation in a rare tumor— <scp>SMARCB</scp> 1â€deficient malignant glomus tumor. Genes Chromosomes and Cancer, 2016, 55, 107-109.	2.8	8
26	PPARÎ ³ ligands increase antileukemic activity of second- and third-generation tyrosine kinase inhibitors in chronic myeloid leukemia cells. Blood Cancer Journal, 2016, 6, e377-e377.	6.2	26
27	Next Generation Sequencing in Oncology. , 2016, , 63-74.		0
28	Role of Shelterin Complex and Alternative Telomere Lengthening in Genomic Instability and Disease Progression in Chronic Myeloid Leukemia. Blood, 2016, 128, 1880-1880.	1.4	0
29	Detailed Clinical, Immunological and Molecular Analysis of NOTCH1, SF3B1 and MYD88 mutations in Chronic Lymphocytic Leukemia Patients Reveals Accumulation of Negative Prognostic Features in NOTCH1 and SF3B1 mutated Individuals. Blood, 2016, 128, 5570-5570.	1.4	0
30	Imatinib in the treatment of chronic myeloid leukemia: current perspectives on optimal dose. Blood and Lymphatic Cancer: Targets and Therapy, 2015, , 101.	2.7	0
31	A study in Polish patients with cardiomyopathy emphasizes pathogenicity of phospholamban (PLN) mutations at amino acid position 9 and low penetrance of heterozygous null PLN mutations. BMC Medical Genetics, 2015, 16, 21.	2.1	28
32	Somatic Mutations in Commonly Mutated Genes in Myeloid Malignancies May Preexist or Arise in the Course of Chronic Myeloid Leukemia - Different Scenarios of Progression Revealed By Targeted Next-Generation Sequencing. Blood, 2015, 126, 2771-2771.	1.4	1
33	HIF1-Alpha and MYC Transcription Factor Signatures in B-Cell Acute Lymphoblastic Leukemia Are Associated with Positive Minimal Residual Disease Status: Therapeutic Implications. Blood, 2015, 126, 1436-1436.	1.4	0
34	Differential expression of <scp> <i>BIRC </i> </scp> family genes in chronic myeloid leukaemia – <scp> <i>BIRC3 </i> </scp> and <scp> <i>BIRC8 </i> </scp> as potential new candidates to identify disease progression. British Journal of Haematology, 2014, 164, 740-742.	2.5	9
35	Statins inhibit ABCB1 and ABCG2 drug transporter activity in chronic myeloid leukemia cells and potentiate antileukemic effects of imatinib. Experimental Hematology, 2014, 42, 439-447.	0.4	21
36	BRAF — A new player in hematological neoplasms. Blood Cells, Molecules, and Diseases, 2014, 53, 77-83.	1.4	26

#	Article	IF	CITATIONS
37	Effects of First and Next-Generation Tyrosine Kinase Inhibitors on Telomere-Mediated Chromosomal Instability in Chronic Myeloid Leukemia Cells. Blood, 2014, 124, 5510-5510.	1.4	2
38	HDAC Inhibitors As Potential New Agents Improving the Efficacy of Monoclonal Antibodies. Blood, 2014, 124, 3641-3641.	1.4	0
39	Gene Expression and Mutation Analysis (GEMA) –Guided Precision Medicine Targeting PARP1 to Induce Synthetic Lethality in DNA-PK –Deficient Quiescent and BRCA-Deficient Proliferating Leukemia Stem and Progenitor Cells. Blood, 2014, 124, 480-480.	1.4	0
40	Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood, 2013, 121, 4175-4183.	1.4	105
41	BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability. Leukemia, 2013, 27, 629-634.	7.2	36
42	Diverse mechanisms of mTOR activation in chronic and blastic phase of chronic myelogenous leukemia. Experimental Hematology, 2013, 41, 462-469.	0.4	6
43	Synthesis and Optical Properties of Tetraarylâ€1,4â€dihydropyrrolo[3,2â€ <i>b</i>]pyrroles. Asian Journal of Organic Chemistry, 2013, 2, 411-415.	2.7	80
44	Anti-oxidant vitamin E prevents accumulation of imatinib-resistant BCR-ABL1 kinase mutations in CML-CP xenografts in NSG mice. Leukemia, 2013, 27, 2253-2254.	7.2	9
45	ARMS-PCR for detection of BRAF V600E hotspot mutation in comparison with Real-Time PCR-based techniques Acta Biochimica Polonica, 2013, 60, .	0.5	16
46	Normal ABL1 Is a Tumor Suppressor and Therapeutic Target In BCR-ABL1–positive Leukemias. Blood, 2013, 122, 1466-1466.	1.4	0
47	Differential Expression of BIRC Family Genes In The Course Of Chronic Myeloid Leukemia – BIRC3 and BIRC8 As Potential New Candidates To Identify Disease Progression. Blood, 2013, 122, 2718-2718.	1.4	0
48	The PERK-elF2α phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle, 2012, 11, 4069-4078.	2.6	58
49	Rac2-MRC-cIll–generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood, 2012, 119, 4253-4263.	1.4	147
50	Terapia przewlekÅ,ej biaÅ,aczki szpikowej – teraźniejszość i wyzwania na przyszÅ,ość. Acta Haematologic Polonica, 2012, 43, 249-257.	^a 0.3	0
51	Bright, Color-Tunable Fluorescent Dyes Based on π-Expanded Diketopyrrolopyrroles. Organic Letters, 2012, 14, 2670-2673.	4.6	79
52	BCR-ABL1 Kinase Inhibits DNA Glycosylases to Enhance Oxidative DNA Damage and Stimulate Genomic Instability. Blood, 2012, 120, 520-520.	1.4	1
53	Monoubiquitinated Fanconi anemia D2 (FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis. Leukemia, 2011, 25, 1259-1267.	7.2	5
54	Imatinib Sensitivity in BCR-ABL1–Positive Chronic Myeloid Leukemia Cells Is Regulated by the Remaining Normal <i>ABL1</i> Allele. Cancer Research, 2011, 71, 5381-5386.	0.9	10

#	Article	IF	CITATIONS
55	Sorafenib Affects Membrane Complement Inhibitors and Improves Antitumor Activity of Rituximab,. Blood, 2011, 118, 3723-3723.	1.4	0
56	Targeting Rac2 - Mitochondrial Respiratory Chain Complex III Signaling to Prevent Genomic Instability in Leukemia Stem and Progenitor Cells. Blood, 2011, 118, 2736-2736.	1.4	0
57	Statins Increase Antileukemic Potency of Imatinib Through the Inhibition of MDR/ABCB1 and BCRP/ABCG2 Drug Transporters Activity. Blood, 2011, 118, 2742-2742.	1.4	Ο
58	Prenyl Transferases Are Involved in the Regulation of CD20 Levels and Influence Anti-CD20 Monoclonal Antibody-Mediated Activation of Complement-Dependent Cytotoxicity,. Blood, 2011, 118, 3722-3722.	1.4	0
59	Src Family Tyrosine Kinases Are Involved in the Transcriptional Regulation of CD20 Levels. Blood, 2011, 118, 1661-1661.	1.4	Ο
60	Mitochondrial Respiratory Chain Complex III Causes Genomic Instability In CML-CP Blood, 2010, 116, 1211-1211.	1.4	24
61	Potentiation of the Antileukemic Effects of Imatinib through the Modulation of BCRP/ABCG2 Activity Blood, 2010, 116, 3400-3400.	1.4	0
62	Proteasome Inhibition Potentiates Antitumor Effects of Photodynamic Therapy in Mice through Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response. Cancer Research, 2009, 69, 4235-4243.	0.9	96
63	ROS-Induced DNA Damage Causing Genomic Instability in CML Stem and/or Progenitor Cells and in Quiescent and/or Proliferating Cells: Role of Mitochondrial Respiratory Chain Complex III Blood, 2009, 114, 3268-3268.	1.4	1
64	BCR/ABL Requires Fanconi Anemia D2 (FANCD2) Protein to Transform Hematopoetic Stem Cells Blood, 2009, 114, 3249-3249.	1.4	0
65	Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice. BMC Cancer, 2008, 8, 197.	2.6	59
66	Statins Impair Antitumor Effects of Rituximab by Inducing Conformational Changes of CD20. PLoS Medicine, 2008, 5, e64.	8.4	115
67	BCR/ABL Inhibits Mismatch Repair to Protect from Apoptosis and Induce Point Mutations. Cancer Research, 2008, 68, 2576-2580.	0.9	92
68	Ciglitazone, an agonist of peroxisome proliferator-activated receptor γ, exerts potentiated cytostatic/cytotoxic effects against tumor cells when combined with lovastatin. International Journal of Oncology, 2008, , .	3.3	2
69	Monoubiquitination of the Fanconi Anemia D2 (FANCD2) Protein Regulates the Transforming Potential of BCR/ABL. Blood, 2008, 112, 3189-3189.	1.4	Ο
70	Erythropoietin reduces cisplatin-induced neurotoxicity without impairment of cytotoxic effects against tumor cells. International Journal of Oncology, 2007, 31, 1547-52.	3.3	3
71	Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Blood, 2007, 110, 651-660.	1.4	28
72	Potentiated antitumor effects of the combination treatment with statins and pamidronate in vitro and in vivo. International Journal of Oncology, 2007, , .	3.3	6

#	Article	IF	CITATIONS
73	BCR/ABL Kinase Inhibits Mismatch Repair To Reduce Apoptosis and Induce Point Mutations Blood, 2007, 110, 32-32.	1.4	6
74	BCR/ABL Kinase Elevates ROS-Mediated Oxidative DNA Damage in CML Stem/Progenitor Cells and Affects the Efficiency and Fidelity of DNA Repair To Induce Genetic Instability Blood, 2007, 110, 34-34.	1.4	0
75	Statins Impair Antitumor Effects of CD20 mAb by Inducing Conformational Changes of CD20 Blood, 2007, 110, 2341-2341.	1.4	Ο
76	Potentiated antitumor effects of the combination treatment with statins and pamidronate in vitro and in vivo. International Journal of Oncology, 2007, 30, 1413-25.	3.3	8
77	BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood, 2006, 108, 319-327.	1.4	271
78	Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene, 2006, 25, 3365-3374.	5.9	163
79	ATR-Chk1 Axis Protects BCR/ABL Leukemia Cells from the Lethal Effect of DNA Double-Strand Breaks. Cell Cycle, 2006, 5, 994-1000.	2.6	53
80	Enhanced Phosphorylation of Nbs1, a Member of DNA Repair/Checkpoint Complex RAD50-Mre11-Nbs1, Can Be Targeted Simultaneously with BCR/ABL Kinase To Eliminate Leukemia Cells Blood, 2006, 108, 2127-2127.	1.4	1
81	Impaired homologous recombination DNA repair and enhanced sensitivity to DNA damage in prostate cancer cells exposed to anchorage-independence. Oncogene, 2005, 24, 3748-3758.	5.9	18
82	The influence of photodynamic therapy on the immune response. Photodiagnosis and Photodynamic Therapy, 2005, 2, 283-298.	2.6	83
83	Direct tumor damage mechanisms of photodynamic therapy Acta Biochimica Polonica, 2005, 52, 339-352.	0.5	222
84	Enhanced Phosphorylation of Nbs1, a Member of the DNA Repair/Checkpoint Activation Complex Rad50/Mre11/Nbs1, Prolongs Cell Cycle S Phase and Contributes to Drug Resistance in BCR/ABL-Positive Leukemias Blood, 2005, 106, 2867-2867.	1.4	1
85	BCR/ABL Kinase Disrupts Formation of Mismatch Repair Complex To Induce Genomic Instability Blood, 2005, 106, 2864-2864.	1.4	Ο
86	ATR-Chk1 Axis Is Activated, but the Function of Chk1 Is Disrupted in BCR/ABL Leukemia Cells Responding to DNA Damage Blood, 2005, 106, 2883-2883.	1.4	1
87	Technology evaluation: SB-485232, GlaxoSmithKline. Current Opinion in Molecular Therapeutics, 2005, 7, 85-93.	2.8	6
88	Prospects for p53-based cancer therapy. Acta Biochimica Polonica, 2005, 52, 321-8.	0.5	7
89	Direct tumor damage mechanisms of photodynamic therapy. Acta Biochimica Polonica, 2005, 52, 339-52.	0.5	63
90	BCR/ABL Recruits p53 Tumor Suppressor Protein to Induce Drug Resistance. Cell Cycle, 2004, 3, 1463-1472.	2.6	28

#	Article	IF	CITATIONS
91	Increased local vascular endothelial growth factor expression associated with antitumor activity of proteasome inhibitor. Apoptosis: an International Journal on Programmed Cell Death, 2004, 9, 193-204.	4.9	5
92	BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species–dependent DNA double-strand breaks. Blood, 2004, 104, 3746-3753.	1.4	252
93	BCR/ABL Oncogenic Kinase Promotes Unfaithful Repair of the Reactive Oxygen Species - Dependent DNA Double-Strand Breaks Blood, 2004, 104, 712-712.	1.4	2
94	A single injection of immature dendritic cells is able to induce antitumour response against a murine colon adenocarcinoma with a low apoptotic index. Oncology Reports, 2002, 9, 991-4.	2.6	9
95	Lactacystin Inhibits Cathepsin A Activity in Melanoma Cell Lines. Tumor Biology, 2001, 22, 211-215.	1.8	22
96	Separation of cathepsin A-like enzyme and the proteasome: evidence that lactacystin/β-lactone is not a specific inhibitor of the proteasome. International Journal of Biochemistry and Cell Biology, 2000, 32, 747-757.	2.8	45
97	Lovastatin and simvastatin are modulators of the proteasome. International Journal of Biochemistry and Cell Biology, 2000, 32, 957-965.	2.8	40
98	Interleukin 12 and indomethacin exert a synergistic, angiogenesis-dependent antitumor activity in mice. Life Sciences, 2000, 66, 1223-1230.	4.3	13
99	A Combination of Retinoic Acid and Proteasome Inhibitors for the Treatment of Leukemias Is Potentially Dangerous. Blood, 1999, 94, 1827-1828.	1.4	6
100	The potentiated antileukemic effects of doxorubicin and interleukin-12 combination are not dependent on nitric oxide production. Cancer Letters, 1999, 147, 67-75.	7.2	9
101	Effective chemo-immunotherapy of L1210 leukemiain vivo using interleukin-12 combined with doxorubicin but not with cyclophosphamide, paclitaxel or cisplatin. International Journal of Cancer, 1998, 77, 720-727.	5.1	39
102	Erythropoietin Prevents the Development of Interleukin-12–Induced Anemia and Thrombocytopenia But Does Not Decrease Its Antitumor Activity in Mice. Blood, 1998, 91, 4387-4388.	1.4	14
103	Antitumor effects of the combination immunotherapy with interleukin-12 and tumor necrosis factor α in mice. Cancer Immunology, Immunotherapy, 1997, 45, 100-108.	4.2	63
104	Potentiation of the anti-tumor effect of actinomycin D by tumor necrosis factor \hat{l}_{\pm} in mice: Correlation betweenin vitro andin vivo results. , 1996, 66, 374-379.		27
105	Decreased natural killer cell activity in whole-blood donors does not seem to result in increased cancer incidence. Transfusion, 1994, 34, 359-360.	1.6	7