Jeong-Il Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9181378/publications.pdf

Version: 2024-02-01

201674 197818 2,647 64 27 49 h-index citations g-index papers 65 65 65 3133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PIL5, a Phytochrome-Interacting Basic Helix-Loop-Helix Protein, Is a Key Negative Regulator of Seed Germination in Arabidopsis thaliana $\hat{A}[W]$. Plant Cell, 2004, 16, 3045-3058.	6.6	409
2	Expanding Roles of PIFs in Signal Integration from Multiple Processes. Molecular Plant, 2017, 10, 1035-1046.	8.3	172
3	Photoactivation and inactivation of <i>Arabidopsis</i> cryptochrome 2. Science, 2016, 354, 343-347.	12.6	149
4	Phytochrome-Specific Type 5 Phosphatase Controls Light Signal Flux by Enhancing Phytochrome Stability and Affinity for a Signal Transducer. Cell, 2005, 120, 395-406.	28.9	148
5	Stem-piped light activates phytochrome B to trigger light responses in <i>Arabidopsis thaliana</i> roots. Science Signaling, 2016, 9, ra106.	3.6	145
6	Phytochrome Phosphorylation Modulates Light Signaling by Influencing the Protein–Protein Interaction[W]. Plant Cell, 2004, 16, 2629-2640.	6.6	98
7	Evidence that phytochrome functions as a protein kinase in plant light signalling. Nature Communications, 2016, 7, 11545.	12.8	92
8	In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A. PLoS ONE, 2015, 10, e0127200.	2.5	88
9	A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nature Communications, 2019, 10, 4216.	12.8	80
10	Overexpression of Arabidopsis Translationally Controlled Tumor Protein Gene AtTCTP Enhances Drought Tolerance with Rapid ABA-Induced Stomatal Closure. Molecules and Cells, 2012, 33, 617-626.	2.6	72
11	Arabidopsis Putative MAP Kinase Kinase Kinases Raf10 and Raf11 are Positive Regulators of Seed Dormancy and ABA Response. Plant and Cell Physiology, 2015, 56, 84-97.	3.1	61
12	Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnology Reports, 2020, 14, 1-8.	1.5	57
13	A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. Biochemical Journal, 2008, 415, 247-255.	3.7	53
14	A <scp>CRY</scp> â€" <scp>BIC</scp> negativeâ€feedback circuitry regulating blue light sensitivity of Arabidopsis. Plant Journal, 2017, 92, 426-436.	5.7	53
15	Overexpression of a Defensin Enhances Resistance to a Fruit-Specific Anthracnose Fungus in Pepper. PLoS ONE, 2014, 9, e97936.	2.5	49
16	Overexpression of an Arabidopsis \hat{l}^2 -glucosidase gene enhances drought resistance with dwarf phenotype in creeping bentgrass. Plant Cell Reports, 2012, 31, 1677-1686.	5.6	48
17	Functional Characterization of Phytochrome Autophosphorylation in Plant Light Signaling. Plant and Cell Physiology, 2010, 51, 596-609.	3.1	46
18	How Do Phytochromes Transmit the Light Quality Information to the Circadian Clock in Arabidopsis?. Molecular Plant, 2014, 7, 1701-1704.	8.3	44

#	Article	IF	CITATIONS
19	Trehaloseâ€6â€phosphate signaling regulates thermoresponsive hypocotyl growth in <i>ArabidopsisÂthaliana</i> . EMBO Reports, 2019, 20, e47828.	4. 5	43
20	NDPK2 as a Signal Transducer in the Phytochrome-mediated Light Signaling. Journal of Biological Chemistry, 2005, 280, 5740-5749.	3.4	41
21	Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacterium-mediated transformation. Plant Cell Reports, 2009, 28, 397-406.	5 . 6	41
22	Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. Plant Cell Reports, 2015, 34, 265-275.	5.6	38
23	Phytochrome phosphorylation in plant light signaling. Photochemical and Photobiological Sciences, 2005, 4, 681.	2.9	35
24	Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in <i>Arabidopsis</i> . Plant Journal, 2018, 94, 790-798.	5.7	34
25	Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnology Reports, 2019, 13, 447-457.	1.5	32
26	Regulation of Photomorphogenic Development by Plant Phytochromes. International Journal of Molecular Sciences, 2019, 20, 6165.	4.1	32
27	Overexpression of Arabidopsis ABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass. Plant Biotechnology Reports, 2013, 7, 165-173.	1.5	31
28	Plant Phytochromes and their Phosphorylation. International Journal of Molecular Sciences, 2019, 20, 3450.	4.1	28
29	<scp>SOG</scp> 1â€dependent <scp>NAC</scp> 103 modulates the <scp>DNA</scp> damage response as a transcriptional regulator in Arabidopsis. Plant Journal, 2019, 98, 83-96.	5.7	28
30	Arabidopsis Raf-Like Kinase Raf10 Is a Regulatory Component of Core ABA Signaling. Molecules and Cells, 2019, 42, 646-660.	2.6	28
31	Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. Planta, 2012, 236, 1135-1150.	3.2	26
32	Agrobacterium-mediated genetic transformation of Miscanthus sinensis. Plant Cell, Tissue and Organ Culture, 2014, 117, 51-63.	2.3	26
33	Transgenic Turfgrasses Expressing Hyperactive Ser599Ala Phytochrome A Mutant Exhibit Abiotic Stress Tolerance. Journal of Plant Growth Regulation, 2016, 35, 11-21.	5.1	25
34	Resistance to <i>Rhizoctonia solani</i> AGâ€2â€2 (IIIB) in creeping bentgrass plants transformed with pepper esterase gene <i>PepEST</i> Plant Pathology, 2011, 60, 631-639.	2.4	22
35	Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants. Planta, 2016, 244, 379-392.	3.2	22
36	Expression of recombinant fullâ€length plant phytochromes assembled with phytochromobilin in <i>Pichia pastoris</i> . FEBS Letters, 2014, 588, 2964-2970.	2.8	18

#	Article	IF	Citations
37	New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity. Plant Physiology, 2016, 171, 2826-2840.	4.8	18
38	Development of transgenic crops based on photoâ€biotechnology. Plant, Cell and Environment, 2017, 40, 2469-2486.	5.7	18
39	New era of precision plant breeding using genome editing. Plant Biotechnology Reports, 2019, 13, 419-421.	1.5	18
40	Transcriptome-based biological dosimetry of gamma radiation in Arabidopsis using DNA damage response genes. Journal of Environmental Radioactivity, 2018, 181, 94-101.	1.7	14
41	<i>SlHair2</i> Regulates the Initiation and Elongation of Type I Trichomes on Tomato Leaves and Stems. Plant and Cell Physiology, 2021, 62, 1446-1459.	3.1	14
42	CRISPR/Cas9-mediated mutation of 5-oxoprolinase gene confers resistance to sulfonamide compounds in Arabidopsis. Plant Biotechnology Reports, 2021, 15, 753-764.	1.5	14
43	Mutation in DDM1 inhibits the homology directed repair of double strand breaks. PLoS ONE, 2019, 14, e0211878.	2.5	13
44	Plant Thermomorphogenic Adaptation to Global Warming. Journal of Plant Biology, 2020, 63, 1-9.	2.1	13
45	Functional characterization of a chloroplast-targeted RNA-binding protein CRP1 in Arabidopsis thaliana under abiotic stress conditions. Journal of Plant Biology, 2014, 57, 349-356.	2.1	11
46	Developmentally Regulated Sesquiterpene Production Confers Resistance to Colletotrichum gloeosporioides in Ripe Pepper Fruits. PLoS ONE, 2014, 9, e109453.	2.5	10
47	Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS ONE, 2017, 12, e0187378.	2.5	9
48	The PAS2 domain is required for dimerization of phytochrome A. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 115-121.	3.9	8
49	Phenotypic Characterization of Transgenic <i>Miscanthus sinensis</i> Plants Overexpressing <i>Arabidopsis</i> Phytochrome B. International Journal of Photoenergy, 2014, 2014, 1-9.	2.5	8
50	Protein Kinase Activity of Phytochrome A Positively Correlates With Photoresponses in Arabidopsis. Frontiers in Plant Science, 2021, 12, 706316.	3.6	8
51	Suppression of Phytochrome-Interacting Factors Enhances Photoresponses of Seedlings and Delays Flowering With Increased Plant Height in Brachypodium distachyon. Frontiers in Plant Science, 2021, 12, 756795.	3.6	8
52	Transgenic Herbicide-Resistant Turfgrasses. , 0, , .		7
53	A Fungus-Inducible Pepper Carboxylesterase Exhibits Antifungal Activity by Decomposing the Outer Layer of Fungal Cell Walls. Molecular Plant-Microbe Interactions, 2018, 31, 505-515.	2.6	7
54	Photo-dependent membrane-less organelles formed from plant phyB and PIF6 proteins in mammalian cells. International Journal of Biological Macromolecules, 2021, 176, 325-331.	7. 5	7

#	Article	IF	CITATIONS
55	Autophosphorylation desensitizes phytochrome signal transduction. Plant Signaling and Behavior, 2010, 5, 868-871.	2.4	6
56	Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against Phytophthora parasitica var. nicotianae. European Journal of Plant Pathology, 2018, 151, 811-823.	1.7	6
57	The dephosphorylated S8A and S18A mutants of (oat) phytochrome A comprise its two species, phyA' and phyA', suggesting that autophosphorylation at these sites is not involved in the phyA differentiation. Photochemical and Photobiological Sciences, 2019, 18, 1242-1248.	2.9	5
58	Expression, Purification, and Spectral Characterization of Phytochromes. Methods in Molecular Biology, 2019, 2026, 95-111.	0.9	3
59	Generation and Characterization of a Specific Polyclonal Antibody against Arabidopsis thaliana Phytochrome-Interacting Factor 3. Journal of Plant Biology, 2021, 64, 181-191.	2.1	2
60	Overexpression of Arabidopsis thaliana blue-light inhibitor of cryptochromes 1 gene alters plant architecture in soybean. Plant Biotechnology Reports, 2021, 15, 459-469.	1.5	2
61	Regulation of Reactive Oxygen Species Promotes Growth and Carotenoid Production Under Autotrophic Conditions in Rhodobacter sphaeroides. Frontiers in Microbiology, 2022, 13, 847757.	3.5	2
62	Recent advances in the development of biotech bentgrass. Journal of Plant Biotechnology, 2009, 36, 327-335.	0.4	1
63	Antisense expression of a staygreen gene (SGR) delays leaf senescence in creeping bentgrass. Rapid Communication in Photoscience, 2014, 3, 28-31.	0.1	1
64	Plant Light Signaling Mediated by Phytochrome Photoreceptors. Trends in Agriculture & Life Sciences, 2020, 58, 1-10.	0.1	0