Birger Bohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9181375/publications.pdf

Version: 2024-02-01

71532 70961 6,911 97 41 76 citations h-index g-index papers 161 161 161 4319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Amplified Trace Gas Removal in the Troposphere. Science, 2009, 324, 1702-1704.	6.0	550
2	Observation and modelling of OH and HO ₂ concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere. Atmospheric Chemistry and Physics, 2012, 12, 1541-1569.	1.9	269
3	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13503-13508.	3.3	251
4	Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO ₂ and RO ₂ radicals. Atmospheric Chemistry and Physics, 2017, 17, 663-690.	1.9	239
5	Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2005, 5, 2189-2201.	1.9	237
6	Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol. Atmospheric Chemistry and Physics, 2007, 7, 4237-4248.	1.9	234
7	Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results. Atmospheric Chemistry and Physics, 2010, 10, 11243-11260.	1.9	231
8	The photolysis of ortho-nitrophenols: a new gas phase source of HONO. Physical Chemistry Chemical Physics, 2006, 8, 2028.	1.3	221
9	Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmospheric Chemistry and Physics, 2012, 12, 1497-1513.	1.9	211
10	Detection of HO ₂ by laser-induced fluorescence: calibration and interferences from RO ₂ radicals. Atmospheric Measurement Techniques, 2011, 4, 1209-1225.	1.2	199
11	Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects. Atmospheric Chemistry and Physics, 2007, 7, 4043-4064.	1.9	198
12	Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO ₂ concentrations in summer 2006. Atmospheric Chemistry and Physics, 2013, 13, 1057-1080.	1.9	188
13	Strong daytime production of OH from HNO2at a rural mountain site. Geophysical Research Letters, 2006, 33, .	1.5	185
14	Wintertime photochemistry in Beijing: observations of RO _{radical concentrations in the North China Plain during the BEST-ONE campaign. Atmospheric Chemistry and Physics, 2018, 18, 12391-12411.}	1.9	177
15	Missing Gas-Phase Source of HONO Inferred from Zeppelin Measurements in the Troposphere. Science, 2014, 344, 292-296.	6.0	154
16	Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies. Environmental Science & Environmenta	4.6	147
17	Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics, 2016, 16, 14959-14977.	1.9	146
18	Experimental evidence for efficient hydroxyl radical regeneration in isoprene oxidation. Nature Geoscience, 2013, 6, 1023-1026.	5.4	132

#	Article	IF	CITATIONS
19	Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. Geophysical Research Letters, 2012, 39, .	1.5	116
20	Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere. Nature Geoscience, 2014, 7, 559-563.	5.4	110
21	Observation and modelling of HO _x radicals in a boreal forest. Atmospheric Chemistry and Physics, 2014, 14, 8723-8747.	1.9	109
22	Photolysis frequency measurement techniques: results of a comparison within the ACCENT project. Atmospheric Chemistry and Physics, 2008, 8, 5373-5391.	1.9	99
23	Experimental budgets of OH, HO ₂ , and RO ₂ radicals and implications for ozone formation in the Pearl River Delta in China 2014. Atmospheric Chemistry and Physics, 2019, 19, 7129-7150.	1.9	92
24	Gas-phase reaction of the OH–benzene adduct with O2: reversibility and secondary formation of HO2. Physical Chemistry Chemical Physics, 1999, 1, 5097-5107.	1.3	91
25	JOYCE: JÃ $^1\!\!$ 4lich Observatory for Cloud Evolution. Bulletin of the American Meteorological Society, 2015, 96, 1157-1174.	1.7	87
26	Formation of Peroxy Radicals from OHâ^'Toluene Adducts and O2. Journal of Physical Chemistry A, 2001, 105, 6092-6101.	1.1	86
27	Actinometric measurements of NO ₂ photolysis frequencies in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2005, 5, 493-503.	1.9	82
28	Intercomparison of measurements of NO ₂ concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmospheric Measurement Techniques, 2010, 3, 21-37.	1.2	77
29	Intercomparison of Two Hydroxyl Radical Measurement Techniques at the Atmosphere Simulation Chamber SAPHIR. Journal of Atmospheric Chemistry, 2007, 56, 187-205.	1.4	76
30	Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration. Atmospheric Measurement Techniques, 2012, 5, 1611-1626.	1.2	75
31	Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR. Atmospheric Measurement Techniques, 2017, 10, 4023-4053.	1.2	74
32	Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties. Atmospheric Chemistry and Physics, 2013, 13, 2837-2855.	1.9	73
33	Relationship between the NO ₂ photolysis frequency and the solar global irradiance. Atmospheric Measurement Techniques, 2009, 2, 725-739.	1.2	69
34	Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO. Atmospheric Chemistry and Physics, 2016, 16, 14475-14493.	1.9	69
35	Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes. Atmospheric Chemistry and Physics, 2015, 15, 991-1012.	1.9	67
36	The HD(CP) ² Observational Prototype Experiment (HOPE) – an overview. Atmospheric Chemistry and Physics, 2017, 17, 4887-4914.	1.9	67

#	Article	IF	CITATIONS
37	Volatility of secondary organic aerosol during OH radical induced ageing. Atmospheric Chemistry and Physics, 2011, 11, 11055-11067.	1.9	66
38	OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget. Atmospheric Chemistry and Physics, 2017, 17, 645-661.	1.9	63
39	Measurements of gaseous H& t;sub>2& t;/sub>SO& t;sub>4& t;/sub> by AP-ID-CIMS during CAREBeijing 2008 Campaign. Atmospheric Chemistry and Physics, 2011, 11, 7755-7765.	1.9	60
40	Model-aided radiometric determination of photolysis frequencies in a sunlit atmosphere simulation chamber. Atmospheric Chemistry and Physics, 2005, 5, 191-206.	1.9	53
41	A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland. Atmospheric Chemistry and Physics, 2015, 15, 799-813.	1.9	52
42	Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2020, 20, 3333-3355.	1.9	44
43	Rate Constants of HO2 + NO Covering Atmospheric Conditions. 1. HO2 Formed by OH + H2O2. Journal of Physical Chemistry A, 1997, 101, 1488-1493.	1.1	43
44	The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation. Earth System Science Data, 2019, 11, 845-863.	3.7	40
45	Predissociation of the NH/ND(c 1Î,v',J') states. Journal of Chemical Physics, 1992, 96, 5059-5068.	1.2	39
46	HO _x budgets during HOxComp: A case study of HO _x chemistry under NO _x â€imited conditions. Journal of Geophysical Research, 2012, 117, .	3.3	38
47	Missing SO ₂ oxidant in the coastal atmosphere? – observations from high-resolution measurements of OH and atmospheric sulfur compounds. Atmospheric Chemistry and Physics, 2014, 14, 12209-12223.	1.9	38
48	OH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2014, 14, 7895-7908.	1.9	38
49	Kinetics of the OH + C2H2 reaction in the presence of O2. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1459.	1.7	37
50	Imidogen (NH/ND) (a1.DELTA.,v'') vibrational distributions in the UV photolyses of hydrazoic acid (HN3/DN3) and isocyanic acid (HNCO/DNCO). The Journal of Physical Chemistry, 1993, 97, 4891-4898.	2.9	36
51	Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production. Atmospheric Chemistry and Physics, 2015, 15, 1289-1298.	1.9	36
52	Formation of HO2 from OH and C2H2 in the presence of O2. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1203-1210.	1.7	35
53	Photolysis frequency of O3to O(1D): Measurements and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI). Journal of Geophysical Research, 2004, 109, .	3.3	33
54	Comparisons of observed and modeled OH and HO ₂ concentrations during the ambient measurement period of the HO _x Comp field campaign. Atmospheric Chemistry and Physics, 2012, 12, 2567-2585.	1.9	30

#	Article	IF	CITATIONS
55	Insights into HO&Itsub>&Iti>x&It/i>&It/sub> and RO&Itsub>&Iti>x&It/i>> chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide. Atmospheric Chemistry and Physics, 2018, 18, 13457-13479.	1.9	28
56	Investigation of the <i>î²</i> -pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2017, 17, 6631-6650.	1.9	27
57	Measurement of atmospheric O3 \hat{a} †' O(1D) photolysis frequencies using filterradiometry. Journal of Geophysical Research, 2004, 109, .	3.3	26
58	Isotope effect in the formation of H ₂ from H ₂ CO studied at the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2010, 10, 5343-5357.	1.9	25
59	HO2 formation from the OH + benzene reaction in the presence of O2. Physical Chemistry Chemical Physics, 2011, 13, 10699.	1.3	25
60	Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO): overview of the field campaigns. Atmospheric Chemistry and Physics, 2008, 8, 1789-1812.	1.9	24
61	Theoretical Study on the Formation of H- and O-Atoms, HONO, OH, NO, and NO ₂ from the Lowest Lying Singlet and Triplet States in <i>Ortho</i> of Chemical Kinetics, 2016, 48, 785-795.	1.0	24
62	Factors affecting O ₃ and NO ₂ photolysis frequencies measured in the eastern Mediterranean during the fiveâ€year period 2002–2006. Journal of Geophysical Research, 2012, 117, .	3.3	23
63	Chemical Mechanism Development: Laboratory Studies and Model Applications. Journal of Atmospheric Chemistry, 2002, 42, 323-357.	1.4	22
64	Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities. Atmospheric Measurement Techniques, 2017, 10, 3151-3174.	1.2	22
65	Investigation of the oxidation of methyl vinyl ketone (MVK) by OH radicals in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 8001-8016.	1.9	22
66	Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments. Atmospheric Chemistry and Physics, 2014, 14, 6941-6952.	1.9	21
67	Evaluation of OH and HO ₂ concentrations and their budgets during photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2018, 18, 11409-11422.	1.9	20
68	Kinetics and mechanism of the reaction of OH with the trimethylbenzenes $\hat{a} \in \text{``experimental evidence for the formation of adduct isomers. Physical Chemistry Chemical Physics, 2012, 14, 13933.}$	1.3	19
69	Influence of local surface albedo variability and ice crystal shape on passive remote sensing of thin cirrus. Atmospheric Chemistry and Physics, 2014, 14, 1943-1958.	1.9	18
70	Reversible addition of the OH radical to $\langle i \rangle p \langle i \rangle$ -cymene in the gas phase: multiple adduct formation. Part 2. Physical Chemistry Chemical Physics, 2014, 16, 17315-17326.	1.3	17
71	Investigation of the & t;i> \hat{l} ±& t;/i>-pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2019, 19, 11635-11649.	1.9	17
72	Vibrational relaxation of NO(=1 \hat{a} ="3) and NO2(0,0,1) with atmospheric gases. Physical Chemistry Chemical Physics, 1999, 1, 1833-1842.	1.3	16

#	Article	IF	CITATIONS
73	Overview: On the transport and transformation of pollutants in the outflow of major population centres $\hat{a} \in ``observational data from the EMeRGe European intensive operational period in summer 2017. Atmospheric Chemistry and Physics, 2022, 22, 5877-5924.$	1.9	16
74	Prompt HO2 Formation Following the Reaction of OH with Aromatic Compounds under Atmospheric Conditions. Journal of Physical Chemistry A, 2012, 116, 6015-6026.	1,1	15
7 5	The generation of CH(X 2Î,vâ€~,Nâ€~) fragments in the photolysis of CH2(1 3B1) radicals. Journal of Cher Physics, 1995, 102, 8842-8845.	nical 1,2	14
76	Parameterization of Thermal Properties of Aging Secondary Organic Aerosol Produced by Photo-Oxidation of Selected Terpene Mixtures. Environmental Science & Environmental Science & 2014, 48, 6168-6176.	4.6	14
77	Modification of a conventional photolytic converter for improving aircraft measurements of NO ₂ via chemiluminescence. Atmospheric Measurement Techniques, 2021, 14, 6759-6776.	1.2	14
78	Temperature dependence of the rate constants of the reactions of oxygen atoms withtrans-2-butene, cis-2-butene, 2-methylpropene, 2-methyl-2-butene, and 2,3-dimethyl-2-butene. International Journal of Chemical Kinetics, 1995, 27, 277-285.	1.0	13
79	Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. Atmospheric Chemistry and Physics, 2021, 21, 8195-8211.	1.9	12
80	Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe. Atmospheric Chemistry and Physics, 2021, 21, 18413-18432.	1.9	11
81	Quenching and relaxation of vibrational levels of imidogen (NH/ND)(a1.DELTA.,v). The Journal of Physical Chemistry, 1993, 97, 7234-7238.	2.9	10
82	Kinetic and mechanistic study of the reaction of OH radicals with methylated benzenes: 1,4-dimethyl-, 1,3,5-trimethyl-, 1,2,4,5-, 1,2,3,5- and 1,2,3,4-tetramethyl-, pentamethyl-, and hexamethylbenzene. Physical Chemistry Chemical Physics, 2015, 17, 13053-13065.	1.3	10
83	Response to Comment on "Missing gas-phase source of HONO inferred from Zeppelin measurements in the troposphere― Science, 2015, 348, 1326-1326.	6.0	10
84	Characterisation and improvement of & amp;lt;sup>1D) filter radiometers. Atmospheric Measurement Techniques, 2016, 9, 3455-3466.	1.2	10
85	Rate constants of the reaction oxygen atom (3P) + acetylene at low temperatures. The Journal of Physical Chemistry, 1990, 94, 8010-8011.	2.9	8
86	Seasonal variations and profile measurements of photolysis frequencies; (O1D) and; (NO2) at the ECHO forest field site. Journal of Geophysical Research, 2006, 111 , .	3.3	8
87	Seasonal measurements of OH, NO <i>_x</i> , and J(O ¹ D) at Mace Head, Ireland. Geophysical Research Letters, 2013, 40, 1659-1663.	1.5	8
88	Atmospheric photooxidation and ozonolysis of lamp;lt;sup>3-carene and 3-caronaldehyde: rate constants and product yields. Atmospheric Chemistry and Physics, 2021, 21, 12665-12685.	1.9	8
89	Impact of the South Asian monsoon outflow on atmospheric hydroperoxides in the upper troposphere. Atmospheric Chemistry and Physics, 2020, 20, 12655-12673.	1.9	8
90	Solar spectral actinic flux and photolysis frequency measurements in a deciduous forest. Journal of Geophysical Research, 2006, 111 , .	3.3	7

#	Article	IF	CITATIONS
91	Photooxidation of pinonaldehyde at ambient conditions investigated in the atmospheric simulation chamber SAPHIR. Atmospheric Chemistry and Physics, 2020, 20, 13701-13719.	1.9	6
92	Chemical Mechanism Development: Laboratory Studies and Model Applications. , 2002, , 323-357.		4
93	Atmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets. Atmospheric Chemistry and Physics, 2021, 21, 16067-16091.	1.9	4
94	Formation of O2(b1.SIGMA.g+) in the Reaction of NH/ND(a1.DELTA.,v) with O2. The Journal of Physical Chemistry, 1995, 99, 965-969.	2.9	3
95	Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large) Tj ETQq $1\ 1\ 0.78$	4311 9 rgBT	⁻/ ③ verlock 1
96	Gas-Phase Reaction Kinetics of the Ortho and Ipso Adducts 1,2,4,5-Tetramethylbenzene–OH with O2. ACS Earth and Space Chemistry, 2021, 5, 2243-2251.	1,2	2
97	Influence of surface albedo inhomogeneities on passive remote sensing of cirrus properties., 2013,,.		1