Chun-xi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9180910/publications.pdf Version: 2024-02-01

Сним-хиТи

#	Article	IF	CITATIONS
1	Mechanochemical synthesis of oxygenated alkynyl carbon materials with excellent Hg(II) adsorption performance from CaC2 and carbonates. Green Energy and Environment, 2023, 8, 275-282.	8.7	12
2	Alkynyl functionalized MoS2 mesoporous materials with superb adsorptivity for heavy metal ions. Journal of Hazardous Materials, 2022, 424, 127579.	12.4	13
3	Peroxovanadic based core-shell bifunctional poly(ionic liquid)s catalyst CuO/SiO2@V-PIL: Its in-situ free radical initiation mechanism for air oxidative desulfurization. Fuel, 2022, 310, 122430.	6.4	12
4	Steric effects of alkyl dibenzothiophenes: The root cause of frustrating efficacy of heterogeneous desulfurization for real diesel. AICHE Journal, 2022, 68, .	3.6	4
5	A novel Sulfur-functionalized alkynyl carbon material for highly efficient removal of Hg(II) from water. Separation and Purification Technology, 2022, 290, 120891.	7.9	6
6	Turn Hazardous Endosulfan into S-Doped Alkynyl Carbon Material for Energy Storage and Hg(II) Adsorption via a Green Mechanochemical Process. ACS Sustainable Chemistry and Engineering, 2022, 10, 9216-9224.	6.7	5
7	A simple model for precisely describing liquid–liquid equilibrium and better understanding extraction mechanism. AICHE Journal, 2021, 67, .	3.6	3
8	Poly(ionic liquid)s based nano core-shell catalyst SiO2@V-PIL for efficient oxidative desulfurization of diesel. Applied Catalysis A: General, 2021, 616, 118096.	4.3	11
9	Mechanochemical conversion of graphite to highly Cross-linked alkynyl carbon material as excellent mercury (II) sorbent. Chemical Engineering Journal, 2021, 415, 129009.	12.7	12
10	Converting CO ₂ into an Oxygenated Alkynyl Carbon Material with High Electrochemical Performance through a Mechanochemical Reaction with CaC ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 9221-9229.	6.7	16
11	Ultrafast desulfurization of diesel oil with ionic liquid based PMoO catalysts and recyclable NaClO oxidant. Chemical Engineering Journal, 2020, 380, 122453.	12.7	52
12	Superhydrophilic alkynyl carbon composite nanofiltration membrane for water purification. Applied Surface Science, 2020, 508, 144788.	6.1	16
13	A low-cost crosslinked polystyrene derived from environmental wastes for adsorption of phenolic compounds from aqueous solution. Journal of Molecular Liquids, 2020, 314, 113641.	4.9	19
14	Preparation of C-MOx nanocomposite for efficient adsorption of heavy metal ions via mechanochemical reaction of CaC2 and transitional metal oxides. Journal of Hazardous Materials, 2020, 393, 122487.	12.4	33
15	Architecture and Electrochemical Performance of Alkynyl-Linked Naphthyl Carbon Skeleton: Naphyne. ACS Applied Materials & Interfaces, 2020, 12, 33076-33082.	8.0	20
16	A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification. Applied Surface Science, 2020, 510, 145425.	6.1	76
17	Spongy acetylenic carbon material prepared by ball milling CaC2 and chlorinated rubber — Its mercury adsorption and electrochemical property. Chinese Journal of Chemical Engineering, 2019, 27, 1988-1995.	3.5	2
18	Poly(ethylene glycol) Diacid-Based Deep Eutectic Solvent with Excellent Denitrogenation Performance and Distinctive Extractive Behavior. Energy & Fuels, 2019, 33, 10380-10388.	5.1	14

#	Article	IF	CITATIONS
19	Efficient synthesis of alkynyl carbon materials derived from CaC2 through solvent-free mechanochemical strategy for supercapacitors. SN Applied Sciences, 2019, 1, 1.	2.9	8
20	Lipophilicity of amphiphilic phosphotungstates matters in catalytic oxidative desulfurization of oil by H2O2. Fuel, 2019, 253, 802-810.	6.4	30
21	Orderly stacked ultrathin graphene oxide membranes on a macroporous tubular ceramic substrate. Journal of Membrane Science, 2019, 586, 177-184.	8.2	27
22	Extractive removal of both basic and non-basic nitrogens from fuel oil by dicarboxyl-modified polyethylene glycol: Performance and mechanism. Fuel, 2019, 254, 115626.	6.4	16
23	Structure and adsorptive property of carbon materials derived from thermal and mechanochemical reaction of CaC2 and chlorinated polymers. Chemical Engineering Journal, 2019, 372, 181-190.	12.7	18
24	Polyacetylene carbon materials: facile preparation using AlCl ₃ catalyst and excellent electrochemical performance for supercapacitors. RSC Advances, 2019, 9, 11986-11995.	3.6	11
25	Preparation of Mesoporous Carbon Materials through Mechanochemical Reaction of Calcium Carbide and Transition Metal Chlorides. Industrial & Engineering Chemistry Research, 2018, 57, 6180-6188.	3.7	17
26	Greatly enhanced reactivity of CaC 2 with perchloro- hydrocarbons in a stirring ball mill for the manufacture of alkynyl carbon materials. Chemical Engineering and Processing: Process Intensification, 2018, 124, 261-268.	3.6	19
27	Phase Transition of FeSO4·7H2O to FeSO4·H2O in the H2SO4–HCl–H2O System by Modeling Solubility. ACS Sustainable Chemistry and Engineering, 2018, 6, 2207-2219.	6.7	4
28	CuSiF ₆ (4,4′-bipyridine) ₂ , a Crystalline Complex with Excellent Adsorptivity for Thiophenic Sulfur Compounds in Model Oil. Energy & Fuels, 2018, 32, 696-702.	5.1	4
29	Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury(II) from wastewater. Journal of Environmental Sciences, 2018, 68, 169-176.	6.1	40
30	Aldol condensation of refluxing acetone on CaC ₂ achieves efficient coproduction of diacetone alcohol, mesityl oxide and isophorone. RSC Advances, 2018, 8, 30610-30615.	3.6	8
31	Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol. Fuel, 2018, 233, 704-713.	6.4	60
32	Greener Production Process of Acetylene and Calcium Diglyceroxide via Mechanochemical Reaction of CaC ₂ and Glycerol. ACS Sustainable Chemistry and Engineering, 2018, 6, 9560-9565.	6.7	15
33	Synthesis and Supercapacitor Application of Alkynyl Carbon Materials Derived from CaC ₂ and Polyhalogenated Hydrocarbons by Interfacial Mechanochemical Reactions. ACS Applied Materials & Interfaces, 2017, 9, 3895-3901.	8.0	61
34	Reductive removal of gaseous nitrous oxide by activated carbon with metal oxide catalysts. RSC Advances, 2017, 7, 10407-10414.	3.6	3
35	Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel. Fuel Processing Technology, 2017, 158, 20-25.	7.2	29
36	Adsorptive Desulfurization of Diesel Oil by Alkynyl Carbon Materials Derived from Calcium Carbide and Polyhalohydrocarbons. Energy & amp; Fuels, 2017, 31, 9035-9042.	5.1	12

#	Article	IF	CITATIONS
37	Rapid spray-crosslinked assembly of a stable high-performance polyelectrolyte bipolar membrane. RSC Advances, 2017, 7, 36313-36318.	3.6	2
38	Solubility of NaHCO ₃ and NH ₄ HCO ₃ in the Relevant Media and Prediction of High-Pressure Phase Equilibria for the NH ₃ –CO ₂ –NaCl–H ₂ O System. Journal of Chemical & Engineering Data, 2017, 62, 4401-4410.	1.9	7
39	Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill. Chemosphere, 2017, 166, 275-280.	8.2	53
40	Efficient Catalysis of Calcium Carbide for the Synthesis of Isophorone from Acetone. Industrial & Engineering Chemistry Research, 2016, 55, 5257-5262.	3.7	17
41	Unified Catalytic Oxidation–Adsorption Desulfurization Process Using Cumene Hydroperoxide as Oxidant and Vanadate Based Polyionic Liquid as Catalyst and Sorbent. Industrial & Engineering Chemistry Research, 2016, 55, 10394-10403.	3.7	37
42	Effect of Quaternization on Structure and Adsorptivity of Hyper Cross-Linked Poly(vinyl imidazole) for Thiohenic Sulfurs in Model Oil. Industrial & Engineering Chemistry Research, 2016, 55, 8079-8086.	3.7	17
43	Adsorptivity of a Hyper Cross-Linked Ionic Polymer Poly(vinyl imidazole)-1,4-bis(chloromethyl)benzene for Thiophenic Sulfurs in Model Oil. Energy & Fuels, 2016, 30, 5035-5041.	5.1	20
44	Efficient separation of phenol from oil by acid–base complexing adsorption. Chemical Engineering Journal, 2015, 281, 749-758.	12.7	48
45	Acylation desulfurization of heavy cracking oil as a supplementary oil upgrading pathway. Fuel Processing Technology, 2015, 130, 7-11.	7.2	12
46	Improving Anti-Protein-Fouling Property of Polyacrylonitrile Ultrafiltration Membrane by Grafting Sulfobetaine Zwitterions. Journal of Chemistry, 2014, 2014, 1-9.	1.9	8
47	Removal of Thiophenic Sulfur Compounds from Oil Using Chlorinated Polymers and Lewis Acid Mixture via Adsorption and Friedel-Crafts Alkylation Reaction. Chinese Journal of Chemical Engineering, 2014, 22, 713-720.	3.5	6
48	Polyacrylonitrile-based zwitterionic ultrafiltration membrane with improved anti-protein-fouling capacity. Applied Surface Science, 2014, 303, 399-405.	6.1	47
49	Surface Tension Measurements for Seven Imidazolium-Based Dialkylphosphate Ionic Liquids and Their Binary Mixtures with Water (Methanol or Ethanol) at 298.15 K and 1 atm. Journal of Chemical & Engineering Data, 2014, 59, 189-196.	1.9	33
50	Complex Extraction of Phenol and Cresol from Model Coal Tar with Polyols, Ethanol Amines, and Ionic Liquids Thereof. Industrial & Engineering Chemistry Research, 2014, 53, 355-362.	3.7	69
51	A Promising Ionic Liquid [BMIM][FeCl ₄] for the Extractive Separation of Aromatic and Aliphatic Hydrocarbons. Journal of Chemical & Engineering Data, 2014, 59, 533-539.	1.9	44
52	A carbonium pseudo ionic liquid with excellent extractive desulfurization performance. AICHE Journal, 2013, 59, 948-958.	3.6	46
53	Functionalized assembly of solid membranes for chiral separation using polyelectrolytes and chiral ionic liquid. AICHE Journal, 2013, 59, 4772-4779.	3.6	23
54	Effect of Mono- and Di-ethanolammonium Formate Ionic Liquids on the Volatility of Water, Ethanol, and Methanol. Chinese Journal of Chemical Engineering, 2013, 21, 1162-1171.	3.5	2

#	Article	IF	CITATIONS
55	Catalytic oxidative desulfurization mechanism in Lewis–BrÃ,nsted complex acid. Applied Catalysis A: General, 2013, 467, 187-195.	4.3	17
56	Catalytic oxidation-extractive desulfurization for model oil using inorganic oxysalts as oxidant and Lewis acid-organic acid mixture as catalyst and extractant. Applied Catalysis A: General, 2013, 456, 67-74.	4.3	45
57	Acylation desulfurization of oil via reactive adsorption. AICHE Journal, 2013, 59, 2966-2976.	3.6	14
58	Inclusion Phenomena between theβ-Cyclodextrin Chiral Selector and Trp-D,L, and Its Use on the Assembly of Solid Membranes. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	2
59	The removal of aniline from wastewater by electrodialysis in the presence of hydrochloric acid. Desalination and Water Treatment, 2013, 51, 5155-5163.	1.0	8
60	Viscosity and Density Measurements for Six Binary Mixtures of Water (Methanol or Ethanol) with an Ionic Liquid ([BMIM][DMP] or [EMIM][DMP]) at Atmospheric Pressure in the Temperature Range of (293.15 to 333.15) K. Journal of Chemical & Engineering Data, 2012, 57, 33-39.	1.9	122
61	Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol. Journal of Chemical Thermodynamics, 2012, 53, 167-175.	2.0	26
62	Solubility of Hydrogen Chloride in Three 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids in the Pressure Range (0 to 100) kPa and Temperature Range (298.15 to 363.15) K. Journal of Chemical & Engineering Data, 2012, 57, 2936-2941.	1.9	38
63	Removal Mechanism of Thiophenic Compounds in Model Oil by Inorganic Lewis Acids. Industrial & Engineering Chemistry Research, 2012, 51, 4682-4691.	3.7	54
64	Catalytic Oxidative Desulfurization of Fuel by H ₂ O ₂ In Situ Produced via Oxidation of 2-Propanol. Industrial & Engineering Chemistry Research, 2012, 51, 4868-4874.	3.7	32
65	Removal of Thiophenic Sulfurs Using an Extractive Oxidative Desulfurization Process with Three New Phosphotungstate Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 6658-6665.	3.7	81
66	Application of chlorinated waste rubber as a flame retardant of low density polyethylene. Journal of Applied Polymer Science, 2012, 123, 3495-3502.	2.6	10
67	Effect of the Ionic Liquid Triethylmethylammonium Dimethylphosphate on the Vapor Pressure of Water, Methanol, Ethanol, and Their Binary Mixtures. Journal of Chemical & Engineering Data, 2011, 56, 1933-1940.	1.9	12
68	Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on the volatility of water, ethanol, and methanol. Fluid Phase Equilibria, 2011, 303, 103-110.	2.5	12
69	Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution. Journal of Chemical Thermodynamics, 2011, 43, 452-457.	2.0	11
70	Estimation of densities of ionic liquids using Patel–Teja equation of state and critical properties determined from group contribution method. Chemical Engineering Science, 2011, 66, 2690-2698.	3.8	58
71	Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen. Energy Conversion and Management, 2011, 52, 1364-1370.	9.2	53
72	Dibenzothiophene hydrodesulfurization using in situ generated hydrogen over Pd promoted alumina-based catalysts. Fuel Processing Technology, 2011, 92, 624-630.	7.2	48

#	Article	IF	CITATIONS
73	Effect of ionic liquid 1-methylimidazolium chloride on the vapour liquid equilibrium of water, methanol, ethanol, and {water+ethanol} mixture. Journal of Chemical Thermodynamics, 2011, 43, 1748-1753.	2.0	29
74	Concentration of ionic liquids from aqueous ionic liquids solution using electrodialyzer. Desalination and Water Treatment, 2011, 34, 326-329.	1.0	8
75	Density Prediction of Ionic Liquids at Different Temperatures and Pressures Using a Group Contribution Equation of State Based on Electrolyte Perturbation Theory. Industrial & Engineering Chemistry Research, 2010, 49, 4420-4425.	3.7	40
76	Improvement of Hydrophobicity of Ionic Liquids by Partial Chlorination and Fluorination of the Cation. Chinese Journal of Chemistry, 2009, 27, 174-178.	4.9	7
77	Removal of Chloroform from Hydrochloride Acid Solution Using Fine Powder of Polymer as Adsorbent. Chinese Journal of Chemistry, 2009, 27, 768-772.	4.9	3
78	Gas Phase Conversion of Carbon Tetrachloride to Alkyl Chlorides Catalyzed by Supported Ionic Liquids. Chinese Journal of Chemistry, 2009, 27, 1741-1748.	4.9	8
79	Union production of low chlorinated polyethylene and chlorinated paraffin via a carbon tetrachloride solvent free process. Journal of Applied Polymer Science, 2009, 111, 63-69.	2.6	4
80	Preparation of microporous particles of isotactic polypropylene via a thermally induced phaseseparation method. Journal of Applied Polymer Science, 2009, 111, 3050-3057.	2.6	4
81	Unified production of chlorinated isotactic polypropylene and chlorinated paraffin via a solvent free chlorination process. Polymer Engineering and Science, 2009, 49, 1587-1593.	3.1	3
82	Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa. Journal of Chemical Thermodynamics, 2009, 41, 167-170.	2.0	27
83	Towards understanding the effect of electrostatic interactions on the density of ionic liquids. Fluid Phase Equilibria, 2009, 279, 87-91.	2.5	61
84	Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model. Fluid Phase Equilibria, 2008, 264, 235-241.	2.5	44
85	Imidazolium-based alkylphosphate ionic liquids – A potential solvent for extractive desulfurization of fuel. Fuel, 2008, 87, 79-84.	6.4	193
86	N,N-dialkylimidazolium dialkylphosphate ionic liquids: Their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group. Fuel Processing Technology, 2008, 89, 978-983.	7.2	88
87	Preparation of Butyl Chloride from Butanol and Hydrochloric Acid Using Ionic Liquids as Catalyst. Chinese Journal of Chemical Engineering, 2008, 16, 151-154.	3.5	6
88	Ternary Liquidâ^'Liquid Equilibria Measurement for Benzene + Cyclohexane + N-Methylimidazole, or N-Ethylimidazole, or N-Methylimidazolium Dibutylphosphate at 298.2 K and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2008, 53, 2170-2174.	1.9	70
89	Molecular Dynamics Simulation of Hydration Structure of KNO3 Electrolyte Solution. Chinese Journal of Chemical Physics, 2007, 20, 22-30.	1.3	7
90	Extractive Desulfurization of Fuel Oil Using Alkylimidazole and Its Mixture with Dialkylphosphate lonic Liquids. Industrial & amp; Engineering Chemistry Research, 2007, 46, 5108-5112.	3.7	147

#	Article	IF	CITATIONS
91	Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate. Fluid Phase Equilibria, 2007, 255, 186-192.	2.5	120
92	Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate. Journal of Chemical Thermodynamics, 2007, 39, 841-846.	2.0	74
93	Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Fuels, 2006, 20, 2083-2087.	5.1	287
94	Vapor Pressure Measurement and Prediction for Ethanol + Methanol and Ethanol + Water Systems Containing Ionic Liquids. Journal of Chemical & Engineering Data, 2006, 51, 1755-1760.	1.9	53
95	Isobaric vapor–liquid equilibria for ethanol–water system containing different ionic liquids at atmospheric pressure. Fluid Phase Equilibria, 2006, 242, 147-153.	2.5	111
96	Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. Fluid Phase Equilibria, 2006, 247, 190-198.	2.5	136
97	Lattice vibration modes and thermal conductivity of potassium dihydrogen phosphate crystal studying by Raman spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 116, 47-53.	3.5	50
98	Representation of the nonideality of electrolyte solutions using the cluster expansion theory. Fluid Phase Equilibria, 2004, 218, 77-84.	2.5	3
99	Structure of KNO3 electrolyte solutions: a Monte Carlo study. Fluid Phase Equilibria, 2004, 225, 1-11.	2.5	14
100	Lattice vibration and absorbance of Er:Yb:YCOB single crystals. Chemical Physics Letters, 2003, 368, 269-275.	2.6	16
101	Raman investigation of lattice vibration modes and thermal conductivity of Nd-doped zircon-type laser crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 98, 156-160.	3.5	21
102	Synthesis of Cu-containing Layered Double Hydroxides with a Narrow Crystallite-size Distribution. Clays and Clay Minerals, 2003, 51, 566-569.	1.3	34
103	Two-body integrals for hard sphere fluid in the first coordination layer. Fluid Phase Equilibria, 2002, 200, 217-225.	2.5	0
104	Two-body integrals for hard sphere fluid based on Tang–Lu RDF expression. Fluid Phase Equilibria, 2002, 201, 37-45.	2.5	0
105	Study of the ionic activity coefficients in aqueous electrolytes by the non-primitive mean spherical approximation equation. Fluid Phase Equilibria, 1996, 124, 99-110.	2.5	14