
José Manuel Gatica Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9180851/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane. Catalysis Today, 2022, 383, 226-235.	2.2	8
2	Clay honeycomb monoliths for the simultaneous retention of lead and cadmium in water. Environmental Technology and Innovation, 2022, 27, 102765.	3.0	3
3	Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue. Arabian Journal for Science and Engineering, 2021, 46, 325-341.	1.7	31
4	Optimized preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for acetone total combustion. Microporous and Mesoporous Materials, 2021, 310, 110651.	2.2	9
5	Copper-iron mixed oxide supported onto cordierite honeycomb as a heterogeneous catalyst in the Kharasch-Sosnovsky oxidation of cyclohexene. Catalysis Today, 2021, , .	2.2	3
6	Use of Au/N-TiO2/SiO2 photocatalysts in building materials with NO depolluting activity. Journal of Cleaner Production, 2020, 243, 118633.	4.6	27
7	Ultrathin Washcoat and Very Low Loading Monolithic Catalyst with Outstanding Activity and Stability in Dry Reforming of Methane. Nanomaterials, 2020, 10, 445.	1.9	8
8	Adding value to natural clays as low-cost adsorbents of methylene blue in polluted water through honeycomb monoliths manufacture. SN Applied Sciences, 2019, 1, 1.	1.5	18
9	One-pot synthesis of Au/N-TiO2 photocatalysts for environmental applications: Enhancement of dyes and NOx photodegradation. Powder Technology, 2019, 355, 793-807.	2.1	45
10	Au-TiO2/SiO2 photocatalysts for building materials: Self-cleaning and de-polluting performance. Building and Environment, 2019, 164, 106347.	3.0	31
11	Au-TiO2/SiO2 photocatalysts with NOx depolluting activity: Influence of gold particle size and loading. Chemical Engineering Journal, 2019, 368, 417-427.	6.6	48
12	Lead removal from aqueous solution by means of integral natural clays honeycomb monoliths. Journal of Hazardous Materials, 2019, 365, 519-530.	6.5	41
13	Low temperature prepared copper-iron mixed oxides for the selective CO oxidation in the presence of hydrogen. Applied Catalysis A: General, 2018, 552, 58-69.	2.2	23
14	Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquatic Toxicology, 2018, 200, 13-20.	1.9	39
15	CeO 2 NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity. Science of the Total Environment, 2017, 590-591, 304-315.	3.9	54
16	Use of pillared clays in the preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for the total oxidation of VOCs. Catalysis Today, 2017, 296, 84-94.	2.2	24
17	Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environmental Pollution, 2017, 227, 39-48.	3.7	91
18	Integration of Adsorption and Photocatalytic Degradation of Methylene Blue Using \$\$hbox {TiO}_{2}\$\$ TiO 2 Supported on Granular Activated Carbon. Arabian Journal for Science and Engineering, 2017, 42, 1475-1486.	1.7	24

#	Article	IF	CITATIONS
19	Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere, 2017, 179, 279-289.	4.2	96
20	Homoagglomeration and heteroagglomeration of TiO 2 , in nanoparticle and bulk form, onto freshwater and marine microalgae. Science of the Total Environment, 2017, 592, 403-411.	3.9	56
21	Insights on the combustion mechanism of ethanol and n-hexane in honeycomb monolithic type catalysts: Influence of the amount and nature of Mn-Cu mixed oxide. Fuel, 2017, 208, 637-646.	3.4	39
22	Clay honeycomb monoliths as low cost CO2 adsorbents. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 415-423.	2.7	13
23	Carbon integral honeycomb monoliths as support of copper catalysts in the Kharasch–Sosnovsky oxidation of cyclohexene. Chemical Engineering Journal, 2016, 290, 174-184.	6.6	7
24	Acyloxylation of 1,4-Dioxanes and 1,4-Dithianes Catalyzed by a Copper–Iron Mixed Oxide. Journal of Organic Chemistry, 2015, 80, 6814-6821.	1.7	13
25	Comparative study of the catalytic performance and final surface structure of Co3O4/La-CeO2 washcoated ceramic and metallic honeycomb monoliths. Catalysis Today, 2015, 253, 190-198.	2.2	26
26	Unveiling the source of activity of carbon integral honeycomb monoliths in the catalytic methane decomposition reaction. Catalysis Today, 2015, 249, 86-93.	2.2	20
27	A comparative study of Bi2WO6, CeO2, and TiO2 as catalysts for selective photo-oxidation of alcohols to carbonyl compounds. Applied Catalysis A: General, 2015, 505, 375-381.	2.2	22
28	A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation. Applied Catalysis B: Environmental, 2014, 144, 425-434.	10.8	67
29	Experimental evidences of the relationship between reducibility and micro- and nanostructure in commercial high surface area ceria. Applied Catalysis A: General, 2014, 479, 35-44.	2.2	13
30	TAP study of toluene total oxidation over a Co ₃ O ₄ /La-CeO ₂ catalyst with an application as a washcoat of cordierite honeycomb monoliths. Physical Chemistry Chemical Physics, 2014, 16, 11447-11455.	1.3	40
31	Speciation-controlled incipient wetness impregnation: A rational synthetic approach to prepare sub-nanosized and highly active ceria–zirconia supported gold catalysts. Journal of Catalysis, 2014, 318, 119-127.	3.1	20
32	Clay honeycomb monoliths for water purification: Modulating methylene blue adsorption through controlled activation via natural coal templating. Applied Surface Science, 2013, 277, 242-248.	3.1	14
33	Monolithic honeycomb design applied to carbon materials for catalytic methane decomposition. Applied Catalysis A: General, 2013, 458, 21-27.	2.2	32
34	Preferential oxidation of CO in the presence of excess of hydrogen on Ru/Al2O3 catalyst: Promoting effect of ceria–terbia mixed oxide. Journal of Catalysis, 2013, 299, 272-283.	3.1	21
35	Combined (S)TEM-FIB Insight into the Influence of the Preparation Method on the Final Surface Structure of a Co ₃ O ₄ /La-Modified-CeO ₂ Washcoated Monolithic Catalyst. Journal of Physical Chemistry C, 2013, 117, 13028-13036.	1.5	13
36	DoE (Design of Experiments) Assisted Allylic Hydroxylation of Enones Catalysed by a Copper–Aluminium Mixed Oxide. European Journal of Organic Chemistry, 2013, 2013, 8307-8314.	1.2	47

#	Article	IF	CITATIONS
37	Simultaneous water gas shift and methanation reactions on Ru/Ce0.8Tb0.2O2â^'x based catalysts. Catalysis Today, 2012, 180, 42-50.	2.2	13
38	Non-cordierite clay-based structured materials for environmental applications. Journal of Hazardous Materials, 2010, 181, 9-18.	6.5	42
39	Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity. Applied Surface Science, 2010, 256, 7111-7117.	3.1	13
40	Easy route to activate clay honeycomb monoliths for environmental applications. Applied Clay Science, 2010, 47, 392-399.	2.6	24
41	Easy extrusion of honeycomb-shaped monoliths using Moroccan natural clays and investigation of their dynamic adsorptive behavior towards VOCs. Journal of Hazardous Materials, 2009, 170, 87-95.	6.5	23
42	Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: Effects of preparation variables. Applied Catalysis A: General, 2008, 342, 150-158.	2.2	49
43	Physicochemical characterization and adsorptive properties of some Moroccan clay minerals extruded as lab-scale monoliths. Applied Clay Science, 2007, 36, 287-296.	2.6	22
44	Originally prepared carbon-based honeycomb monoliths with potential application asÂVOCs adsorbents. Comptes Rendus Chimie, 2006, 9, 1215-1220.	0.2	27
45	Extension of preparation methods employed with ceramic materials to carbon honeycomb monoliths. Carbon, 2004, 42, 3251-3254.	5.4	90
46	Reactivation of aged model Pd/Ce0.68Zr0.32O2three-way catalyst by high temperature oxidising treatment. Chemical Communications, 2004, , 196-197.	2.2	17
47	Thermal Stabilization of CexZr1-xO2Oxygen Storage Promoters by Addition of Al2O3:Â Effect of Thermal Aging on Textural, Structural, and Morphological Properties. Chemistry of Materials, 2004, 16, 4273-4285.	3.2	78
48	Chemical Reactivity of Binary Rare Earth Oxides. , 2004, , 9-55.		3
49	Some contributions of electron microscopy to the characterisation of the strong metal–support interaction effect. Catalysis Today, 2003, 77, 385-406.	2.2	181
50	CHEMICAL AND NANOSTRUCTURAL ASPECTS OF THE PREPARATION AND CHARACTERISATION OF CERIA AND CERIA-BASED MIXED OXIDE-SUPPORTED METAL CATALYSTS. Catalytic Science Series, 2002, , 85-168.	0.6	25
51	Study of the Structural Modifications Induced by Reducing Treatments on a Pd/Ce0.8Tb0.2O2-x/La2O3â~Al2O3Catalyst by Means of X-ray Diffraction and Electron Microscopy Techniques. Chemistry of Materials, 2002, 14, 1405-1410.	3.2	17
52	Investigation by Means of H2 Adsorption, Diffraction, and Electron Microscopy Techniques of a Cerium/Terbium Mixed Oxide Supported on a Lanthana-Modified Alumina. Chemistry of Materials, 2002, 14, 844-850.	3.2	26
53	Hydrogen scrambling over Rh/Ce0.68Zr0.32O2 and Rh/Al2O3 catalysts: Effects of support, metal precursor and redox aging. Physical Chemistry Chemical Physics, 2002, 4, 381-388.	1.3	6
54	Steady-state isotopic transient kinetic analysis of the H2/D2 exchange reaction as a tool for characterising the metal phase in supported platinum catalysts. Applied Catalysis A: General, 2002, 232, 39-50.	2.2	9

#	Article	IF	CITATIONS
55	Characterization of the Metal Phase in NM/Ce0.68Zr0.32O2 (NM:  Pt and Pd) Catalysts by Hydrogen Chemisorption and HRTEM Microscopy:  A Comparative Study. Journal of Physical Chemistry B, 2001, 105, 1191-1199.	1.2	85
56	Metal Sintering in Rh/Al2O3Catalysts Followed by HREM,1H NMR, and H2Chemisorption. Langmuir, 2001, 17, 2720-2726.	1.6	15
57	Effects of the Nature of the Reducing Agent on the Transient Redox Behavior of NM/Ce0.68Zr0.32O2 (NM=Pt, Pd, and Rh). Journal of Catalysis, 2001, 200, 181-193.	3.1	107
58	Effect of Mild Re-oxidation Treatments with CO2 on the Chemisorption Capability of a Pt/CeO2 Catalyst Reduced at 500°C. Journal of Catalysis, 2001, 200, 411-415.	3.1	48
59	Title is missing!. Catalysis Letters, 2001, 76, 131-137.	1.4	27
60	Reduction of High Surface Area CeO2â^'ZrO2Mixed Oxides. Journal of Physical Chemistry B, 2000, 104, 9186-9194.	1.2	150
61	Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts. Chemical Communications, 2000, , 2167-2168.	2.2	87
62	Rhodium Dispersion in a Rh/Ce0.68Zr0.32O2 Catalyst Investigated by HRTEM and H2 Chemisorption. Journal of Physical Chemistry B, 2000, 104, 4667-4672.	1.2	79
63	XPS analysis and microstructural characterization of a Ce/Tb mixed oxide supported on a lanthana-modified transition alumina. , 1999, 27, 941-949.		33
64	Oxygen storage capacity improvement using CeO2-ZrO2 mixed oxides in three way catalysts. Studies in Surface Science and Catalysis, 1999, , 257-262.	1.5	9
65	Influence of the nature of the metal precursor salt on the redox behaviour of ceria in Rh/CeO2 catalysts. Studies in Surface Science and Catalysis, 1995, 96, 419-429.	1.5	34
66	Development of Acidity on Sol-Gel Prepared TiO ₂ -SiO ₂ Catalysts. Materials Research Society Symposia Proceedings, 1994, 346, 685.	0.1	7
67	Hydrogen chemisorption on ceria: influence of the oxide surface area and degree of reduction. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3499.	1.7	138