Thomas Huthwelker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9180162/publications.pdf

Version: 2024-02-01

		687363	996975
15	784	13	15
papers	citations	h-index	g-index
	2.5		1.500
15	15	15	1520
all docs	docs citations	times ranked	citing authors
15 all docs	15 docs citations	15 times ranked	1520 citing authors

#	Article	IF	Citations
1	Quantitatively Probing the Al Distribution in Zeolites. Journal of the American Chemical Society, 2014, 136, 8296-8306.	13.7	199
2	Supersaturated calcium carbonate solutions are classical. Science Advances, 2018, 4, eaao6283.	10.3	116
3	Introducing Time Resolution to Detect Ce ³⁺ Catalytically Active Sites at the Pt/CeO ₂ Interface through Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 102-108.	4.6	80
4	Quantitative depth profiling of Ce ³⁺ in Pt/CeO ₂ by in situ high-energy XPS in a hydrogen atmosphere. Physical Chemistry Chemical Physics, 2015, 17, 5078-5083.	2.8	77
5	Amorphous CaCO ₃ : Influence of the Formation Time on Its Degree of Hydration and Stability. Journal of the American Chemical Society, 2018, 140, 14289-14299.	13.7	64
6	Probing the solid–liquid interface with tender x rays: A new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source. Review of Scientific Instruments, 2020, 91, 023103.	1.3	45
7	Towards the surface hydroxyl species in CeO ₂ nanoparticles. Nanoscale, 2019, 11, 18142-18149.	5.6	41
8	Changes in the Silanol Protonation State Measured In Situ at the Silica–Aqueous Interface. Journal of Physical Chemistry Letters, 2012, 3, 231-235.	4.6	37
9	Additives: Their Influence on the Humidity- and Pressure-Induced Crystallization of Amorphous CaCO ₃ . Chemistry of Materials, 2020, 32, 4282-4291.	6.7	30
10	Na ₂ CO ₃ -modified CaO-based CO ₂ sorbents: the effects of structure and morphology on CO ₂ uptake. Physical Chemistry Chemical Physics, 2020, 22, 24697-24703.	2.8	22
11	Electronic and Chemical State of Aluminum from the Single- (K) and Double-Electron Excitation (KL _{Il&lll} , KL _I) X-ray Absorption Near-Edge Spectra of α-Alumina, Sodium Aluminate, Aqueous Al ³⁺ ·(H ₂ O) ₆ , and Aqueous Al ^{3#«/sup>. Journal of Physical Chemistry B, 2015, 119, 8380-8388.}	2.6	20
12	In Situ X-ray Absorption Spectroscopy and Droplet-Based Microfluidics: An Analysis of Calcium Carbonate Precipitation. ACS Measurement Science Au, 2021, 1, 27-34.	4.4	16
13	Factors influencing surface carbon contamination in ambient-pressure x-ray photoelectron spectroscopy experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	16
14	Aerosol-based synthesis of pure and stable amorphous calcium carbonate. Chemical Communications, 2019, 55, 10725-10728.	4.1	13
15	Droplet-based in situ X-ray absorption spectroscopy cell for studying crystallization processes at the tender X-ray energy range. RSC Advances, 2019, 9, 34004-34010.	3.6	8