Xing-Dao He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9179653/publications.pdf

Version: 2024-02-01

		567281	580821
48	708	15	25
papers	citations	h-index	g-index
50	50	50	839
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tapered Microfiber MZI Biosensor for Highly Sensitive Detection of <i>Staphylococcus</i> Aureus. IEEE Sensors Journal, 2022, 22, 5531-5539.	4.7	11
2	Fiber Ring Laser Based on Side-Polished Fiber MZI for Enhancing Refractive Index and Torsion Measurement. IEEE Sensors Journal, 2022, 22, 7779-7784.	4.7	9
3	Tapered Side-Polished Microfibre Sensor for High Sensitivity hCG Detection. IEEE Sensors Journal, 2022, 22, 7727-7733.	4.7	3
4	Spatial confinement effects of laser-induced breakdown spectroscopy at reduced air pressures. Frontiers of Optoelectronics, 2022, 15, .	3.7	3
5	Mach-Zehnder Interferometer for High Temperature (1000 °C) Sensing Based on a Few-Mode Fiber. Photonic Sensors, 2021, 11, 341-349.	5.0	12
6	Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sensors Journal, 2021, 21, 12734-12751.	4.7	78
7	Efficient Processing of Spectral Measurements Using Virtually Imaged Phased Array. IEEE Photonics Technology Letters, 2021, 33, 177-180.	2.5	1
8	Intrusion Location Technology of Sagnac Distributed Fiber Optical Sensing System Based on Deep Learning. IEEE Sensors Journal, 2021, 21, 13327-13334.	4.7	9
9	Simulated biomechanical effect of aspheric transition zone ablation profiles after conventional hyperopia refractive surgery. Mathematical Biosciences and Engineering, 2021, 18, 2442-2454.	1.9	1
10	Comparative Study on Sensing Properties of Fiber-Coupled Microbottle Resonators With Polymer Materials. IEEE Sensors Journal, 2021, 21, 26681-26689.	4.7	5
11	A Laser-Locked Hollow Waveguide Gas Sensor for Simultaneous Measurements of CO ₂ Isotopologues with High Accuracy, Precision, and Sensitivity. Analytical Chemistry, 2021, 93, 15468-15473.	6.5	2
12	Sensing Characteristics of Fiber Fabry-Perot Sensors Based on Polymer Materials. IEEE Access, 2020, 8, 171316-171324.	4.2	10
13	Real-Time Monitoring of ¹³ C- and ¹⁸ O-Isotopes of Human Breath CO ₂ Using a Mid-Infrared Hollow Waveguide Gas Sensor. Analytical Chemistry, 2020, 92, 12943-12949.	6.5	14
14	Compact Hollow Waveguide Mid-Infrared Gas Sensor For Simultaneous Measurements of Ambient CO ₂ and Water Vapor. Journal of Lightwave Technology, 2020, 38, 4580-4587.	4.6	18
15	Investigation of a Side-Polished Fiber MZI and Its Sensing Performance. IEEE Sensors Journal, 2020, 20, 5909-5914.	4.7	21
16	Measurement of Bulk Viscosity of CO2 Based on Spontaneous Rayleigh-Brillouin Scattering. IEEE Access, 2020, 8, 40909-40917.	4.2	1
17	Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection. Sensors and Actuators B: Chemical, 2020, 320, 128283.	7.8	58
18	Novel Microfiber Sensor and Its Biosensing Application for Detection of hCG Based on a Singlemode-Tapered Hollow Core-Singlemode Fiber Structure. IEEE Sensors Journal, 2020, 20, 9071-9078.	4.7	20

#	Article	IF	Citations
19	Use of spectral domain optical coherence tomography to detect internal defects of resin composites in carious teeth after restorations. Journal of Modern Optics, 2020, 67, 1509-1515.	1.3	O
20	Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues. Applied Spectroscopy Reviews, 2019, 54, 457-481.	6.7	25
21	Stimulated Brillouin scattering in combination with visible absorption spectroscopy for authentication of vegetable oils and detection of olive oil adulteration. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 320-327.	3.9	16
22	Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer. Biosensors and Bioelectronics, 2019, 145, 111563.	10.1	29
23	High Temperature (Up to 950 °C) Sensor Based on Micro Taper In-Line Fiber Mach–Zehnder Interferometer. Applied Sciences (Switzerland), 2019, 9, 2394.	2.5	12
24	Measurement of Temperature-Dependent Bulk Viscosities of Nitrogen, Oxygen and Air From Spontaneous Rayleigh-Brillouin Scattering. IEEE Access, 2019, 7, 136439-136451.	4.2	11
25	Raman spectroscopy for the discrimination and quantification of fuel blends. Journal of Raman Spectroscopy, 2019, 50, 1008-1014.	2.5	10
26	Influence of Light Coupling Configuration and Alignment on the Stability of HWG-Based Gas Sensor System for Real-Time Detection of Exhaled Carbon Dioxide. IEEE Sensors Journal, 2019, 19, 11972-11979.	4.7	9
27	Ultrasensitive Microfiber Refractive Index Sensor Based on Mach-Zehnder Interference of Core Offset Structure., 2019,,.		0
28	High sensitivity biosensor for Staphylococcus Aureus detection based on tapered a singlemode-no core-singlemode fiber structure. , 2019, , .		0
29	The effect of pressure on spontaneous Rayleigh–Brillouin scattering spectrum in nitrogen. Journal of Modern Optics, 2018, 65, 970-977.	1.3	0
30	Hollow Core Fiber Based Interferometer for High-Temperature (1000 $\hat{A}^{\circ}C$) Measurement. Journal of Lightwave Technology, 2018, 36, 1583-1590.	4.6	59
31	Performance comparison of fluorinated and chlorinated donor–acceptor copolymers for polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 4658-4662.	5.5	14
32	Perspective: Current challenges and solutions of Doppler optical coherence tomography and angiography for neuroimaging. APL Photonics, 2018, 3, .	5.7	16
33	Spontaneous Rayleigh-Brillouin scattering spectral analysis based on the Wiener filter. AIP Advances, 2018, 8, 015210.	1.3	4
34	High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol. Sensors and Actuators B: Chemical, 2018, 271, 1-8.	7.8	45
35	An efficient method for discriminating four important edible oils based on stimulated Brillouin scattering spectroscopy. Analytical Methods, 2018, 10, 3859-3863.	2.7	1
36	Multiple Competition Processes Between Stimulated Brillouin and Raman Scattering in a Sulfate Aqueous Solution. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	3

#	Article	IF	CITATION
37	All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide. AlP Advances, $2016, 6, .$	1.3	13
38	All-thiophene-substituted N-heteroacene electron-donor materials for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 13519-13524.	10.3	7
39	Experimental study on stimulated scattering of ZnO nanospheres dispersed in water. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	6
40	Stimulated scattering effects in gold-nanorod-water samples pumped by 532 nm laser pulses. Scientific Reports, 2015, 5, 11964.	3.3	14
41	Laser pulse compression method to measure Brillouin gain in water. Journal of Modern Optics, 2015, 62, 877-882.	1.3	0
42	Measurement of the D/H, 18O/16O, and 17O/16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 \hat{l}_4 m. Sensors, 2014, 14, 9027-9045.	3.8	12
43	Simultaneous monitoring of temporal profiles of NO3, NO2 and O3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133, 199-205.	2.3	32
44	Boltzmann constant determined by fluorescent spectroscopy for verifying thermometers. Frontiers of Optoelectronics, 2014, 7, 64-68.	3.7	1
45	Energy level control: toward an efficient hot electron transport. Scientific Reports, 2014, 4, 5983.	3.3	32
46	Temperature dependence of threshold and gain coefficient of stimulated Brillouin scattering in water. Applied Physics B: Lasers and Optics, 2012, 108, 717-720.	2.2	31
47	Investigation of the influence of temperature on threshold value and pulse duration of stimulated Brillouin scattering in liquid water. Journal of Modern Optics, 2012, 59, 1410-1414.	1.3	6
48	Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water. Physical Review A, 2009, 80, .	2.5	24