Petra BukovskÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9179556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME Journal, 2022, 16, 676-685.	9.8	48
2	Drought rearranges preferential carbon allocation to arbuscular mycorrhizal community members co-inhabiting roots of Medicago truncatula. Environmental and Experimental Botany, 2022, 199, 104897.	4.2	8
3	Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin. Frontiers in Microbiology, 2021, 12, 574060.	3.5	16
4	Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza, 2020, 30, 63-77.	2.8	17
5	Arbuscular mycorrhiza and soil organic nitrogen: network of players and interactions. Chemical and Biological Technologies in Agriculture, 2019, 6, .	4.6	67
6	Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. PLoS ONE, 2019, 14, e0224938.	2.5	11
7	Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. Mycorrhiza, 2019, 29, 567-579.	2.8	18
8	Could indigenous arbuscular mycorrhizal communities be used to improve tolerance of pistachio to salinity and/or drought?. Symbiosis, 2019, 79, 269-283.	2.3	18
9	Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers?. Mycorrhiza, 2018, 28, 269-283.	2.8	82
10	Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Andropogon gerardii Growth and Nutrition. Frontiers in Microbiology, 2018, 9, 2862.	3.5	16
11	Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers?. Mycorrhiza, 2018, 28, 465-465.	2.8	22
12	Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza, 2018, 28, 435-450.	2.8	30
13	Soil receptivity for ectomycorrhizal fungi: Tuber aestivum is specifically stimulated by calcium carbonate and certain organic compounds, but not mycorrhizospheric bacteria. Applied Soil Ecology, 2017, 117-118, 38-45.	4.3	5
14	Extremely Acidic Soils are Dominated by Species-Poor and Highly Specific Fungal Communities. Microbial Ecology, 2017, 73, 321-337.	2.8	16
15	Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers. Frontiers in Microbiology, 2016, 7, 711.	3.5	42
16	Molecular community analysis of arbuscular mycorrhizal fungi—Contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia, 2016, 59, 179-187.	1.2	27
17	Can inoculation with living soil standardize microbial communities in soilless potting substrates?. Applied Soil Ecology, 2016, 108, 278-287.	4.3	5
18	Mutabilis in mutabili: Spatiotemporal dynamics of a truffle colony in soil. Soil Biology and Biochemistry, 2015, 90, 62-70.	8.8	11

#	Article	IF	CITATIONS
19	Tuber aestivum association with non-host roots. Mycorrhiza, 2014, 24, 603-610.	2.8	45
20	Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders?. Frontiers in Plant Science, 2013, 4, 134.	3.6	112
21	Terminal restriction fragment length measurement errors are affected mainly by fragment length, G + C nucleotide content and secondary structure melting point. Journal of Microbiological Methods, 2010, 82, 223-228.	1.6	28