Yaroslav I Korpan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9179203/publications.pdf

Version: 2024-02-01

38	1,182	19	34
papers	citations	h-index	g-index
39	39	39	1184
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Potentiometric sensing of histamine using immobilized enzymes on layered double hydroxides. Journal of Food Science and Technology, 2020, 58, 2936-2942.	1.4	7
2	L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochimica Acta, 2017, 231, 209-215.	2.6	36
3	Amperometric L-arginine biosensor based on a novel recombinant arginine deiminase. Mikrochimica Acta, 2017, 184, 2679-2686.	2.5	17
4	Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode. Mikrochimica Acta, 2016, 183, 1981-1987.	2.5	20
5	Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosensors and Bioelectronics, 2016, 77, 505-511.	5.3	94
6	Site-binding model as a basis for numerical evaluation of analytical parameters of capacitance-biosensors for formaldehyde and methylamine detection. Sensors and Actuators B: Chemical, 2013, 188, 824-830.	4.0	12
7	Biosensors. A quarter of a century of R&D experience. Biopolymers and Cell, 2013, 29, 188-206.	0.1	27
8	Formaldehyde Oxidizing Enzymes and Genetically Modified Yeast Hansenula polymorpha Cells in Monitoring and Removal of Formaldehyde. , 2011, , .		4
9	Glucose Biosensor Based on Screen-Printed Electrodes and Glucose Oxidase Layer Modified by MWCNT-NH2. Sensor Letters, 2011, 9, 2356-2359.	0.4	3
10	Conductometric Biosensor Based on Flavocytochrome <i>b</i> ₂ for L-Lactate Determination. Sensor Letters, 2011, 9, 2388-2391.	0.4	6
11	Formaldehyde-sensitive conductometric sensors based on commercial and recombinant formaldehyde dehydrogenase. Mikrochimica Acta, 2010, 170, 337-344.	2.5	24
12	Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes. Biopolymers and Cell, 2010, 26, 56-61.	0.1	8
13	Conductometric Chemosensors Based on Calixarenes for Determination of Amines and Amino Acids. Sensor Letters, 2009, 7, 989-994.	0.4	14
14	Formaldehyde conductometric biosensor based on the recombinant formaldehyde dehydrogenase from Hansenula polymorpha yeast. Biopolymers and Cell, 2008, 24, 135-141.	0.1	3
15	Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosensors and Bioelectronics, 2007, 22, 2790-2795.	5.3	39
16	Sensitivity and Specificity Improvement of an Ion Sensitive Field Effect Transistors-Based Biosensor for Potato Glycoalkaloids Detection. Journal of Agricultural and Food Chemistry, 2006, 54, 707-712.	2.4	17
17	Electrical characterization of functionalized platinum electrodes and ISFET sensors for metal ion detection. Materials Science and Engineering C, 2006, 26, 149-153.	3.8	12
18	Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane. Biosensors and Bioelectronics, 2006, 22, 575-581.	5.3	44

#	Article	IF	Citations
19	Enzymatic conductometric sensor for formaldehyde detection in model samples. Biopolymers and Cell, 2005, 21, 425-432.	0.1	4
20	Potentiometric biosensor for detection of potato glycoalcaloids: control of its analytical characteristics, comparison with thin-layer chromatography. Biopolymers and Cell, 2005, 21, 275-282.	0.1	1
21	Potato glycoalkaloids: true safety or false sense of security?. Trends in Biotechnology, 2004, 22, 147-151.	4.9	95
22	Application of enzyme field effect transistors for fast detection of total glycoalkaloids content in potatoes. Sensors and Actuators B: Chemical, 2004, 103, 416-422.	4.0	24
23	Potato glycoalkaloids detection based on conductometric sensor coupled to butyryl cholinesterase. Biopolymers and Cell, 2004, 20, 331-336.	0.1	1
24	Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Analytical and Bioanalytical Chemistry, 2003, 377, 496-506.	1.9	75
25	Application of enzyme biosensor base on pH-sensitive field transistors for determination of glucose concentration in potato juice. Biopolymers and Cell, 2003, 19, 553-557.	0.1	1
26	Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Research, 2002, 2, 307-314.	1,1	35
27	A novel enzyme biosensor for steroidal glycoalkaloids detection based on pH-sensitive field effect transistors. Bioelectrochemistry, 2002, 55, 9-11.	2.4	28
28	Potato glycoalkaloids: dissemination, physical and chemical properties, toxicity and methods of detection. Biopolymers and Cell, 2002, 18, 478-484.	0.1	2
29	Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Analytica Chimica Acta, 2001, 445, 47-55.	2.6	70
30	Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosensors and Bioelectronics, 2000, 15, 77-83.	5.3	157
31	Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum. Biosensors and Bioelectronics, 1999, 14, 283-287.	5.3	76
32	Biosensors based on conductometric detection. Biopolymers and Cell, 1998, 14, 268-276.	0.1	9
33	Selective Determination of Heavy Metal Ions with Sensors Coupled to Immobilised Enzymes., 1998,, 281-288.		1
34	A Novel Enzyme Biosensor Specific for Formaldehyde Based on pH-Sensitive Field Effect Transistors. Journal of Chemical Technology and Biotechnology, 1997, 68, 209-213.	1.6	29
35	Application of urease conductometric biosensor for heavy-metal ion determination. Sensors and Actuators B: Chemical, 1995, 24, 145-148.	4.0	106
36	New Approaches for Formaldehyde Assay Based on Use of Enzymatic Kit or pH-Sensitive Field Effect Transistor Biosensor., 1995,, 689-700.		0

#	Article	IF	CITATIONS
37	Methylotrophic yeast microbiosensor based on ion-sensitive field effect transistors for methanol and ethanol determination. Analytica Chimica Acta, 1993, 271, 203-208.	2.6	23
38	A Cell Biosensor Specific for Formaldehyde Based on pH-Sensitive Transistors Coupled to Methylotrophic Yeast Cells with Genetically Adjusted Metabolism. Analytical Biochemistry, 1993, 215, 216-222.	1.1	55