Ricardo Villarreal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9179199/publications.pdf Version: 2024-02-01

RICADOO VILLADDEAL

#	Article	IF	CITATIONS
1	Akirin/Subolesin regulatory mechanisms at host/tick–pathogen interactions. MicroLife, 2022, 3, .	1.0	2
2	The antibody response to the glycan αâ€Gal correlates with COVIDâ€19 disease symptoms. Journal of Medical Virology, 2021, 93, 2065-2075.	2.5	25
3	Unravelling how in vitro capacitation alters ram sperm chromatin before and after cryopreservation. Andrology, 2021, 9, 414-425.	1.9	7
4	Comparative analysis of Rhipicephalus tick salivary gland and cement elementome. Heliyon, 2021, 7, e06721.	1.4	3
5	Arthropod Ectoparasites Have Potential to Bind SARS-CoV-2 via ACE. Viruses, 2021, 13, 708.	1.5	7
6	Tick Importin-Î \pm Is Implicated in the Interactome and Regulome of the Cofactor Subolesin. Pathogens, 2021, 10, 457.	1.2	5
7	Characterization of the anti-α-Gal antibody profile in association with Guillain-Barré syndrome, implications for tick-related allergic reactions. Ticks and Tick-borne Diseases, 2021, 12, 101651.	1.1	7
8	Probiotic Bacteria with High Alpha-Gal Content Protect Zebrafish against Mycobacteriosis. Pharmaceuticals, 2021, 14, 635.	1.7	14
9	Function of cofactor Akirin2 in the regulation of gene expression in model human Caucasian neutrophil-like HL60 cells. Bioscience Reports, 2021, 41, .	1.1	1
10	Characterization by Quantitative Serum Proteomics of Immune-Related Prognostic Biomarkers for COVID-19 Symptomatology. Frontiers in Immunology, 2021, 12, 730710.	2.2	30
11	Aging Induces Hepatic Oxidative Stress and Nuclear Proteomic Remodeling in Liver from Wistar Rats. Antioxidants, 2021, 10, 1535.	2.2	10
12	Changes in Serum Biomarkers of Oxidative Stress in Cattle Vaccinated with Tick Recombinant Antigens: A Pilot Study. Vaccines, 2021, 9, 5.	2.1	11
13	Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Review of Proteomics, 2021, 18, 1099-1116.	1.3	12
14	Serum proteome of dogs at subclinical and clinical onset of canine leishmaniosis. Transboundary and Emerging Diseases, 2020, 67, 318-327.	1.3	12
15	Coronavirus in cat flea: findings and questions regarding COVID-19. Parasites and Vectors, 2020, 13, 409.	1.0	14
16	Vaccination with Alpha-Gal Protects Against Mycobacterial Infection in the Zebrafish Model of Tuberculosis. Vaccines, 2020, 8, 195.	2.1	25
17	Quantitative Proteomics Identifies Metabolic Pathways Affected by Babesia Infection and Blood Feeding in the Sialoproteome of the Vector Rhipicephalus bursa. Vaccines, 2020, 8, 91.	2.1	7
18	Allergic Reactions and Immunity in Response to Tick Salivary Biogenic Substances and Red Meat Consumption in the Zebrafish Model. Frontiers in Cellular and Infection Microbiology, 2020, 10, 78.	1.8	21

#	Article	IF	CITATIONS
19	A Novel Combined Scientific and Artistic Approach for the Advanced Characterization of Interactomes: The Akirin/Subolesin Model. Vaccines, 2020, 8, 77.	2.1	22
20	Vaccination with Ectoparasite Proteins Involved in Midgut Function and Blood Digestion Reduces Salmon Louse Infestations. Vaccines, 2020, 8, 32.	2.1	18
21	Cryopreservation of ram sperm alters the dynamic changes associated with inÂvitro capacitation. Theriogenology, 2020, 145, 100-108.	0.9	18
22	Anaplasma pathogen infection alters chemical composition of the exoskeleton of hard ticks (Acari:) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
23	Tick and Host Derived Compounds Detected in the Cement Complex Substance. Biomolecules, 2020, 10, 555.	1.8	32
24	Comparative Proteomic Analysis of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) Tropical and Temperate Lineages: Uncovering Differences During Ehrlichia canis Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 611113.	1.8	6
25	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Research, 2020, 9, 1366.	0.8	3
26	A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Research, 2020, 9, 1366.	0.8	4
27	A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of Ixodes ricinus and Dermacentor reticulatus Infestations in Companion Animals. Frontiers in Physiology, 2019, 10, 977.	1.3	22
28	Clinical gamasoidosis and antibody response in two patients infested with Ornithonyssus bursa (Acari: Gamasida: Macronyssidae). Experimental and Applied Acarology, 2019, 78, 555-564.	0.7	12
29	Human amyloid-Î ² enriched extracts: evaluation of in vitro and in vivo internalization and molecular characterization. Alzheimer's Research and Therapy, 2019, 11, 56.	3.0	16
20	Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental	0.0	0

30	and feeding stages of the poultry red mite <i>Dermanyssus gallinae</i> (De Geer, 1778). Avian Pathology, 2019, 48, S52-S59.	0.8	8
31	Freezing–Thawing Procedures Remodel the Proteome of Ram Sperm before and after In Vitro Capacitation. International Journal of Molecular Sciences, 2019, 20, 4596.	1.8	22
32	Reduction in Oviposition of Poultry Red Mite (Dermanyssus gallinae) in Hens Vaccinated with Recombinant Akirin. Vaccines, 2019, 7, 121.	2.1	15
33	The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. Scientific Reports, 2019, 9, 13236.	1.6	17
34	Tick Bites Induce Anti-α-Gal Antibodies in Dogs. Vaccines, 2019, 7, 114.	2.1	16
35	A metaproteomics approach reveals changes in mandibular lymph node microbiota of wild boar naturally exposed to an increasing trend of Mycobacterium tuberculosis complex infection. Tuberculosis, 2019, 114, 103-112.	0.8	2
36	Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the	1.3	10

Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the Identification of New Control Targets. Frontiers in Physiology, 2019, 10, 462. 36 1.3

#	Article	IF	CITATIONS
37	Anaplasma phagocytophilum modifies tick cell microRNA expression and upregulates isc-mir-79 to facilitate infection by targeting the Roundabout protein 2 pathway. Scientific Reports, 2019, 9, 9073.	1.6	12
38	Transcriptome and Proteome Response of Rhipicephalus annulatus Tick Vector to Babesia bigemina Infection. Frontiers in Physiology, 2019, 10, 318.	1.3	24
39	The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasites and Vectors, 2019, 12, 154.	1.0	38
40	A Vaccinology Approach to the Identification and Characterization of Dermanyssus gallinae Candidate Protective Antigens for the Control of Poultry Red Mite Infestations. Vaccines, 2019, 7, 190.	2.1	17
41	Guillain-Barré and Alpha-gal Syndromes: Saccharides-induced Immune Responses. Exploratory Research and Hypothesis in Medicine, 2019, 000, 000-000.	0.1	8
42	Functional Evolution of Subolesin/Akirin. Frontiers in Physiology, 2018, 9, 1612.	1.3	49
43	Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. Scientific Reports, 2018, 8, 14224.	1.6	68
44	Comparative proteomics identified immune response proteins involved in response to vaccination with heat-inactivated Mycobacterium bovis and mycobacterial challenge in cattle. Veterinary Immunology and Immunopathology, 2018, 206, 54-64.	0.5	8
45	Integrated metatranscriptomics and metaproteomics for the characterization of bacterial microbiota in unfed Ixodes ricinus. Ticks and Tick-borne Diseases, 2018, 9, 1241-1251.	1.1	36
46	High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. Expert Review of Vaccines, 2018, 17, 569-576.	2.0	32
47	Biotic and abiotic factors shape the microbiota of wildâ€caught populations of the arbovirus vector <i>Culicoides imicola</i> . Insect Molecular Biology, 2018, 27, 847-861.	1.0	18
48	Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. Expert Review of Proteomics, 2018, 15, 627-635.	1.3	18
49	A reverse vaccinology approach to the identification and characterization of Ctenocephalides felis candidate protective antigens for the control of cat flea infestations. Parasites and Vectors, 2018, 11, 43.	1.0	22
50	Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum. Frontiers in Cellular and Infection Microbiology, 2018, 8, 265.	1.8	30
51	The Impact of Post-Genomics Approaches in Neurodegenerative Demyelinating Diseases: The Case of Guillain-Barré Syndrome. Current Medicinal Chemistry, 2018, 25, 3482-3490.	1.2	2
52	Applying proteomics to tick vaccine development: where are we?. Expert Review of Proteomics, 2017, 14, 211-221.	1.3	28
53	Infection-derived lipids elicit an immune deficiency circuit in arthropods. Nature Communications, 2017, 8, 14401.	5.8	103
54	Salivary Prostaglandin E2: Role in Tick-Induced Allergy to Red Meat. Trends in Parasitology, 2017, 33, 495-498.	1.5	27

#	Article	IF	CITATIONS
55	Effect of blood type on anti-α-Gal immunity and the incidence of infectious diseases. Experimental and Molecular Medicine, 2017, 49, e301-e301.	3.2	75
56	Combination of RT-PCR and proteomics for the identification of Crimean-Congo hemorrhagic fever virus in ticks. Heliyon, 2017, 3, e00353.	1.4	10
57	Myosin 1b and F-actin are involved in the control of secretory granule biogenesis. Scientific Reports, 2017, 7, 5172.	1.6	17
58	Heat Shock Proteins in Vector-pathogen Interactions: The Anaplasma phagocytophilum Model. Heat Shock Proteins, 2017, , 375-398.	0.2	4
59	Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 23.	1.8	66
60	Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Frontiers in Cellular and Infection Microbiology, 2017, 7, 114.	1.8	321
61	Comparative Proteomics Reveals Differences in Host-Pathogen Interaction between Infectious and Commensal Relationship with Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2017, 7, 145.	1.8	11
62	Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 307.	1.8	44
63	Vaccinomics Approach to the Identification of Candidate Protective Antigens for the Control of Tick Vector Infestations and Anaplasma phagocytophilum Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 360.	1.8	34
64	Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis. Clinical Proteomics, 2017, 14, 36.	1.1	49
65	Remodeling of tick cytoskeleton in response to infection with i Anaplasma phagocytophilum i. Frontiers in Bioscience - Landmark, 2017, 22, 1830-1844.	3.0	7
66	Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget, 2017, 8, 20630-20644.	0.8	54
67	Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines. Frontiers in Cellular and Infection Microbiology, 2016, 6, 20.	1.8	25
68	The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis. Parasites and Vectors, 2016, 9, 467.	1.0	33
69	Tick–Host–Pathogen Interactions: Conflict and Cooperation. PLoS Pathogens, 2016, 12, e1005488.	2.1	96
70	<i>Anaplasma phagocytophilum</i> increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector <i>lxodes scapularis</i> . Epigenetics, 2016, 11, 303-319.	1.3	73
71	Research Priorities and Trends in Infections Shared with Wildlife. Wildlife Research Monographs, 2016, , 55-78.	0.4	1
72	Vaccinomics Approach to Tick Vaccine Development. Methods in Molecular Biology, 2016, 1404, 275-286.	0.4	23

5

#	Article	IF	CITATIONS
73	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
74	Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 2016, 7, 10507.	5.8	450
75	Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain–Barré Syndrome. Journal of Immunology, 2016, 196, 1102-1107.	0.4	15
76	Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis. PLoS Neglected Tropical Diseases, 2016, 10, e0004541.	1.3	12
77	Quantitative proteomics reveals Piccolo as a candidate serological correlate of recovery from Guillain-Barré syndrome. Oncotarget, 2016, 7, 74582-74591.	0.8	5
78	Regulation of the Immune Response to α-Gal and Vector-borne Diseases. Trends in Parasitology, 2015, 31, 470-476.	1.5	34
79	Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasites and Vectors, 2015, 8, 599.	1.0	71
80	Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS ONE, 2015, 10, e0137237.	1.1	31
81	Prospects for vaccination against the ticks of pets and the potential impact on pathogen transmission. Veterinary Parasitology, 2015, 208, 26-29.	0.7	19
82	Functional Genomics of Tick Vectors Challenged with the Cattle Parasite Babesia bigemina. Methods in Molecular Biology, 2015, 1247, 475-489.	0.4	3
83	Bacterial membranes enhance the immunogenicity and protective capacity of the surface exposed tick Subolesin-Anaplasma marginale MSP1a chimeric antigen. Ticks and Tick-borne Diseases, 2015, 6, 820-828.	1.1	9
84	Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis. PLoS Genetics, 2015, 11, e1005120.	1.5	139
85	Molecular and immunological characterization of three strains of Anaplasma marginale grown in cultured tick cells. Ticks and Tick-borne Diseases, 2015, 6, 522-529.	1.1	9
86	Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells*. Molecular and Cellular Proteomics, 2015, 14, 3154-3172.	2.5	135
87	Proteomics Characterization of Tick-Host-Pathogen Interactions. Methods in Molecular Biology, 2015, 1247, 513-527.	0.4	8
88	Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. PLoS ONE, 2015, 10, e0133038.	1.1	23
89	Oral Vaccination with Heat Inactivated Mycobacterium bovis Activates the Complement System to Protect against Tuberculosis. PLoS ONE, 2014, 9, e98048.	1.1	52
90	Mosquito Akirin as a potential antigen for malaria control. Malaria Journal, 2014, 13, 470.	0.8	19

#	Article	IF	CITATIONS
91	Tonsils of the Soft Palate Do Not Mediate the Response of Pigs to Oral Vaccination with Heat-Inactivated Mycobacterium bovis. Vaccine Journal, 2014, 21, 1128-1136.	3.2	14
92	Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide. Journal of Proteomics, 2014, 105, 204-216.	1.2	16
93	A Systems Biology Approach to the Characterization of Stress Response in Dermacentor reticulatus Tick Unfed Larvae. PLoS ONE, 2014, 9, e89564.	1.1	72
94	Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to Rhipicephalus microplus. Vaccine, 2013, 31, 4728-4735.	1.7	42
95	Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine, 2013, 31, 1187-1196.	1.7	77
96	Proteomics Approach to the Study of Cattle Tick Adaptation to White Tailed Deer. BioMed Research International, 2013, 2013, 1-8.	0.9	17
97	Reciprocal Regulation of NF-kB (Relish) and Subolesin in the Tick Vector, Ixodes scapularis. PLoS ONE, 2013, 8, e65915.	1.1	45
98	Anaplasma phagocytophilum Inhibits Apoptosis and Promotes Cytoskeleton Rearrangement for Infection of Tick Cells. Infection and Immunity, 2013, 81, 2415-2425.	1.0	99
99	Characterization of the tick-pathogen interface by quantitative proteomics. Ticks and Tick-borne Diseases, 2012, 3, 154-158.	1.1	14
100	Kinetics of biodegradation of diesel fuel by enriched microbial consortia from polluted soils. International Journal of Environmental Science and Technology, 2012, 9, 749-758.	1.8	34
101	Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine, 2012, 30, 273-279.	1.7	68
102	Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine, 2012, 30, 265-272.	1.7	62
103	Expression of heat shock proteins and subolesin affects stress responses, <i>Anaplasma phagocytophilum</i> infection and questing behaviour in the tick, <i>lxodes scapularis</i> . Medical and Veterinary Entomology, 2012, 26, 92-102.	0.7	76
104	Host expression of methylmalonyl-CoA mutase and tuberculosis: A missing link?. Medical Hypotheses, 2011, 76, 361-364.	0.8	7
105	Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. Vaccine, 2011, 29, 2248-2254.	1.7	60
106	Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine, 2011, 29, 8575-8579.	1.7	73
107	Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Veterinary Parasitology, 2011, 181, 17-22.	0.7	116
108	Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitology Research, 2010, 106, 471-479.	0.6	110

#	Article	IF	CITATIONS
109	Subolesin expression in response to pathogen infection in ticks. BMC Immunology, 2010, 11, 7.	0.9	53
110	Application of highly sensitive saturation labeling to the analysis of differential protein expression in infected ticks from limited samples. Proteome Science, 2010, 8, 43.	0.7	27
111	Bioprocess design and economics of recombinant BM86/BM95 antigen production for anti-tick vaccines. Biochemical Engineering Journal, 2010, 52, 79-90.	1.8	15
112	Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to <i>Anaplasma</i> spp. Infection and Heat Shock. International Journal of Proteomics, 2010, 2010, 1-11.	2.0	55
113	Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum. Vaccine, 2010, 28, 1786-1795.	1.7	40
114	Characterization of ferritin 2 for the control of tick infestations. Vaccine, 2010, 28, 2993-2998.	1.7	111
115	Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. Vaccine, 2010, 28, 5398-5406.	1.7	44
116	Characterization of Aedes albopictus akirin for the control of mosquito and sand fly infestations. Vaccine, 2010, 29, 77-82.	1.7	46
117	The effect of aging on insulin signalling pathway is tissue dependent: Central role of adipose tissue in the insulin resistance of aging. Mechanisms of Ageing and Development, 2009, 130, 189-197.	2.2	29
118	Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, subolesin. Parasitology Research, 2009, 105, 97-111.	0.6	62
119	Extractive bioconversion to produce the Aedes albopictus akirin in an aqueous two-phase system supporting Pichia pastoris growth and protein secretion. Biochemical Engineering Journal, 2009, 46, 105-114.	1.8	20
120	First data on Eurasian wild boar response to oral immunization with BCG and challenge with a Mycobacterium bovis field strain. Vaccine, 2009, 27, 6662-6668.	1.7	77
121	Properties of Average Score Distributions of SEQUEST. Molecular and Cellular Proteomics, 2008, 7, 1135-1145.	2.5	142
122	Comparative genomics and proteomics to study tissue-specific response and function in naturalMycobacterium bovisinfections. Animal Health Research Reviews, 2007, 8, 81-88.	1.4	21
123	Highâ€sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: Application to biological studies. Journal of Mass Spectrometry, 2007, 42, 1391-1403.	0.7	68
124	Proteomic and transcriptomic analyses of differential stress/inflammatory responses in mandibular lymph nodes and oropharyngeal tonsils of European wild boars naturally infected withMycobacterium bovis. Proteomics, 2007, 7, 220-231.	1.3	48
125	Systematic characterization of phosphorylation sites in NFATc2 by linear ion trap mass spectrometry. Proteomics, 2006, 6, S16-S27.	1.3	15
126	Altered subcellular distribution of IRS-1 and IRS-3 is associated with defective Akt activation and GLUT4 translocation in insulin-resistant old rat adipocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 197-206.	1.9	9

#	Article	IF	CITATIONS
127	Differential gene expression of insulin receptor isoforms A and B and insulin receptor substrates 1, 2 and 3 in rat tissues: modulation by aging and differentiation in rat adipose tissue. Journal of Molecular Endocrinology, 2005, 34, 153-161.	1.1	52
128	ObRa and ObRe Are Differentially Expressed in Adipose Tissue in Aged Food-Restricted Rats: Effects on Circulating Soluble Leptin Receptor Levels. Endocrinology, 2005, 146, 4934-4942.	1.4	24
129	c-Jun N-terminal Kinase (JNK) Positively Regulates NFATc2 Transactivation through Phosphorylation within the N-terminal Regulatory Domain. Journal of Biological Chemistry, 2005, 280, 20867-20878.	1.6	59
130	Statistical Model for Large-Scale Peptide Identification in Databases from Tandem Mass Spectra Using SEQUEST. Analytical Chemistry, 2004, 76, 6853-6860.	3.2	101
131	Activation of MAP kinase by insulin and vanadate in adipocytes from young and old rats. Molecular and Cellular Endocrinology, 2002, 189, 77-84.	1.6	25
132	Challenges for the Control of Poultry Red Mite (<i>Dermanyssus gallinae</i>). , 0, , .		4