Bin Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	808 nm driven Nd ³⁺ -sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging. Nanoscale, 2015, 7, 190-197.	2.8	161
2	Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale, 2017, 9, 7941-7946.	2.8	140
3	Near Infrared Light Sensitive Ultraviolet–Blue Nanophotoswitch for Imaging-Guided "Off–On― Therapy. ACS Nano, 2018, 12, 3217-3225.	7.3	113
4	Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3054-3058.	7.2	97
5	Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale, 2015, 7, 8048-8057.	2.8	79
6	Semimetal–Semiconductor Transitions for Monolayer Antimonene Nanosheets and Their Application in Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803244.	11.1	64
7	An 800 nm driven NaErF ₄ @NaLuF ₄ upconversion platform for multimodality imaging and photodynamic therapy. Nanoscale, 2018, 10, 12356-12363.	2.8	62
8	Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy. Biomaterials, 2020, 251, 120088.	5.7	58
9	Ultrastrong Absorption Meets Ultraweak Absorption: Unraveling the Energy-Dissipative Routes for Dye-Sensitized Upconversion Luminescence. Journal of Physical Chemistry Letters, 2018, 9, 4625-4631.	2.1	48
10	Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe. Scientific Reports, 2016, 6, 38617.	1.6	46
11	A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood. Biosensors and Bioelectronics, 2017, 92, 517-522.	5.3	38
12	Bcl-2 inhibitor uploaded upconversion nanophotosensitizers to overcome the photodynamic therapy resistance of cancer through adjuvant intervention strategy. Biomaterials, 2017, 144, 73-83.	5.7	38
13	Topographic Evolution of Von KÃirmÃin Crater Revealed by the Lunar Rover Yutuâ€2. Geophysical Research Letters, 2019, 46, 12764-12770.	1.5	38
14	Temperatureâ€Feedback Nanoplatform for NIRâ€II Pentaâ€Modal Imagingâ€Guided Synergistic Photothermal Therapy and CARâ€NK Immunotherapy of Lung Cancer. Small, 2021, 17, e2101397.	5.2	38
15	Overall scheme and on-orbit images of Chang'E-2 lunar satellite CCD stereo camera. Science China Technological Sciences, 2011, 54, 2237-2242.	2.0	33
16	In situ optical measurements of Chang'E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith. Geophysical Research Letters, 2015, 42, 8312-8319.	1.5	33
17	Enhancement of Raman Scattering and Exciton/Trion Photoluminescence of Monolayer and Few-Layer MoS ₂ by Ag Nanoprisms and Nanoparticles: Shape and Size Effects. Journal of Physical Chemistry C, 2021, 125, 4119-4132.	1.5	32
18	One-step in situ solid-substrate-based whole blood immunoassay based on FRET between upconversion and gold nanoparticles. Biosensors and Bioelectronics, 2017, 92, 335-341.	5.3	31

Βιν Χυε

#	Article	IF	CITATIONS
19	In situ optical measurements of Chang'Eâ€3 landing site in Mare Imbrium: 1. Mineral abundances inferred from spectral reflectance. Geophysical Research Letters, 2015, 42, 6945-6950.	1.5	28
20	Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles. Biosensors and Bioelectronics, 2017, 92, 328-334.	5.3	27
21	Highly effective and chemically stable surface enhanced Raman scattering substrates with flower-like 3D Ag-Au hetero-nanostructures. Scientific Reports, 2018, 8, 898.	1.6	27
22	Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers. Scientific Reports, 2017, 7, 45633.	1.6	26
23	Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures. Angewandte Chemie, 2018, 130, 3108-3112.	1.6	24
24	Novel Au Catalysis Strategy for the Synthesis of Au@Pt Core–Shell Nanoelectrocatalyst with Self-Controlled Quasi-Monolayer Pt Skin. ACS Applied Materials & Interfaces, 2017, 9, 32688-32697.	4.0	23
25	Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles <i>via</i> a dye sensitization strategy. Journal of Materials Chemistry C, 2019, 7, 8607-8615.	2.7	23
26	A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Scientific Reports, 2015, 5, 14934.	1.6	21
27	A versatile synthesis route for metal@SiO2 core–shell nanoparticles using 11-mercaptoundecanoic acid as primer. Journal of Materials Chemistry C, 2013, 1, 6355.	2.7	20
28	Facile synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell upconversion nanoparticles via successive ion layer adsorption and one-pot reaction technique. CrystEngComm, 2013, 15, 4765.	1.3	20
29	Compressed energy transfer distance for remarkable enhancement of the luminescence of Nd3+-sensitized upconversion nanoparticles. Journal of Materials Chemistry C, 2018, 6, 6597-6604.	2.7	17
30	Laser-Induced Periodic Ag Surface Structure with Au Nanorods Plasmonic Nanocavity Metasurface for Strong Enhancement of Adenosine Nucleotide Label-Free Photoluminescence Imaging. ACS Omega, 2020, 5, 14030-14039.	1.6	15
31	Switching off the SERS signal for highly sensitive and homogeneous detection of glucose by attenuating the electric field of the tips. Applied Surface Science, 2019, 493, 423-430.	3.1	13
32	Plasmonic Nanocavity Metasurface Based on Laser-Structured Silver Surface and Silver Nanoprisms for the Enhancement of Adenosine Nucleotide Photoluminescence. ACS Applied Nano Materials, 2019, 2, 7152-7161.	2.4	12
33	Monitoring Cyanobacteria Bloom in Dianchi Lake Based on Ground-Based Multispectral Remote-Sensing Imaging: Preliminary Results. Remote Sensing, 2021, 13, 3970.	1.8	7
34	Plasmonic enhancement of exciton and trion photoluminescence in 2D MoS2 decorated with Au nanorods: Impact of nonspherical shape. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115213.	1.3	7
35	A Sub-pixel Centroid Algorithm for Star Image Based on Gaussian Distribution. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 53, 307-310.	0.4	6
36	Impact remnants rich in carbonaceous chondrites detected on the Moon by the Chang'e-4 rover. Nature Astronomy, 2022, 6, 207-213.	4.2	6

Βιν Χυε

#	Article	IF	CITATIONS
37	Design and Ground Verification for Multispectral Camera on the Mars Tianwen-1 Rover. Space Science Reviews, 2022, 218, .	3.7	6
38	Design of the microlens arrays coupling with imaging fiber bundle. Optoelectronics Letters, 2013, 9, 169-172.	0.4	5
39	Design of a novel LED collimating element based on freeform surface. Optoelectronics Letters, 2013, 9, 9-12.	0.4	4
40	A Laboratory Open-Set Martian Rock Classification Method Based on Spectral Signatures. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	4
41	Temperature analysis of Cassegrain optical antenna for space laser communication. Optical Engineering, 2018, 57, 1.	0.5	3
42	Autonomous Star Identification for GEO Objects Orientation Based on Delaunay Triangulation. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 54, 62-66.	0.4	0
43	Titelbild: Precisely Tailoring Upconversion Dynamics via Energy Migration in Core–Shell Nanostructures (Angew. Chem. 12/2018). Angewandte Chemie, 2018, 130, 3031-3031.	1.6	Ο