Paola Tosi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178592/publications.pdf

Version: 2024-02-01

257429 345203 1,591 38 24 36 citations h-index g-index papers 41 41 41 1698 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Annals of Botany, 2011, 108, 23-35.	2.9	147
2	Trafficking of storage proteins in developing grain of wheat. Journal of Experimental Botany, 2009, 60, 979-991.	4.8	113
3	Cell Walls of Developing Wheat Starchy Endosperm: Comparison of Composition and RNA-Seq Transcriptome Â. Plant Physiology, 2012, 158, 612-627.	4.8	110
4	An integrated study of grain development of wheat (cv. Hereward). Journal of Cereal Science, 2012, 56, 21-30.	3.7	85
5	RNA Interference Suppression of Genes in Glycosyl Transferase Families 43 and 47 in Wheat Starchy Endosperm Causes Large Decreases in Arabinoxylan Content. Plant Physiology, 2013, 163, 95-107.	4.8	80
6	Seed Storage Proteins of Faba Bean (<i>Vicia faba</i> L): Current Status and Prospects for Genetic Improvement. Journal of Agricultural and Food Chemistry, 2018, 66, 12617-12626.	5.2	67
7	Spatial Patterns of Gluten Protein and Polymer Distribution in Wheat Grain. Journal of Agricultural and Food Chemistry, 2013, 61, 6207-6215.	5.2	64
8	Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. Journal of Cereal Science, 2012, 55, 183-187.	3.7	59
9	Distribution of Lipids in the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions. Journal of Agricultural and Food Chemistry, 2015, 63, 10705-10716.	5.2	59
10	Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Molecular Biology, 2007, 64, 125-136.	3.9	55
11	The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta, 2006, 224, 633-645.	3.2	51
12	Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. Journal of Cereal Science, 2008, 48, 722-728.	3.7	51
13	Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theoretical and Applied Genetics, 2004, 108, 468-476.	3.6	48
14	Modification of the Low Molecular Weight (LMW) Glutenin Composition of Transgenic Durum Wheat: Effects on Glutenin Polymer Size and Gluten Functionality. Molecular Breeding, 2005, 16, 113-126.	2.1	48
15	Suppression of gliadins results in altered protein body morphology in wheat. Journal of Experimental Botany, 2011, 62, 4203-4213.	4.8	48
16	Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain. Planta, 2015, 241, 669-685.	3.2	47
17	The dynamics of protein body formation in developing wheat grain. Plant Biotechnology Journal, 2016, 14, 1876-1882.	8.3	45
18	Temperature and nitrogen supply interact to determine protein distribution gradients in the wheat grain endosperm. Journal of Experimental Botany, 2018, 69, 3117-3126.	4.8	43

#	Article	IF	CITATIONS
19	Identification and Quantification of Major Faba Bean Seed Proteins. Journal of Agricultural and Food Chemistry, 2020, 68, 8535-8544.	5.2	42
20	Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theoretical and Applied Genetics, 2005, 111, 1159-1166.	3.6	38
21	Spatial distribution of functional components in the starchy endosperm of wheat grains. Journal of Cereal Science, 2020, 91, 102869.	3.7	36
22	Trafficking and deposition of prolamins in wheat. Journal of Cereal Science, 2012, 56, 81-90.	3.7	34
23	Variation in genome organization of the plant pathogenic fungus Colletotrichum lindemuthianum. Current Genetics, 1998, 33, 291-298.	1.7	33
24	Gradients in compositions in the starchy endosperm of wheat have implications for milling and processing. Trends in Food Science and Technology, 2018, 82, 1-7.	15.1	30
25	The Gsp-1 genes encode the wheat arabinogalactan peptide. Journal of Cereal Science, 2017, 74, 155-164.	3.7	27
26	Influence of temperature on the composition and polymerization of gluten proteins during grain filling in spring wheat (Triticum aestivum L.). Journal of Cereal Science, 2015, 65, 1-8.	3.7	21
27	Influence of temperature during grain filling on gluten viscoelastic properties and gluten protein composition. Journal of the Science of Food and Agriculture, 2016, 96, 122-130.	3.5	20
28	Intrinsic wheat lipid composition effects the interfacial and foaming properties of dough liquor. Food Hydrocolloids, 2018, 75, 211-222.	10.7	18
29	Health and Nutrition Studies Related to Cereal Biodiversity: A Participatory Multi-Actor Literature Review Approach. Nutrients, 2018, 10, 1207.	4.1	14
30	High post-anthesis temperature effects on bread wheat (Triticum aestivum L.) grain transcriptome during early grain-filling. BMC Plant Biology, 2020, 20, 170.	3.6	11
31	Accumulation and deposition of triacylglycerols in the starchy endosperm of wheat grain. Journal of Cereal Science, 2021, 98, 103167.	3.7	9
32	Characterisation of an s-type low molecular weight glutenin subunit of wheat and its proline and glutamine-rich repetitive domain. Journal of Cereal Science, 2010, 51, 96-104.	3.7	6
33	The trafficking pathway of a wheat storage protein in transgenic rice endosperm. Annals of Botany, 2014, 113, 807-815.	2.9	4
34	The Impact of Processing on Potentially Beneficial Wheat Grain Components for Human Health. , 2020, , 387-420.		4
35	Puroindoline genes and proteins in tetraploid and hexaploid species of Triticum. Journal of Cereal Science, 2009, 49, 202-211.	3.7	3
36	The contribution of fiber components to water absorption of wheat grown in the UK. Cereal Chemistry, 2020, 97, 940-948.	2.2	3

#	Article	IF	CITATIONS
37	PWE-145â€The role of a gluten free diet in â€~lifestylers'? the first double blind randomised study. , 2018, ,		2
38	Understanding Elemental Uptake in Plants Using High Resolution SIMS and Complementary Techniques. Microscopy and Microanalysis, 2014, 20, 1316-1317.	0.4	0