Alexander S Hahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178426/publications.pdf

Version: 2024-02-01

21 papers 1,546 citations

11 h-index 752256 20 g-index

25 all docs

25 docs citations

25 times ranked

3450 citing authors

#	Article	IF	CITATIONS
1	Functional analysis of polymorphisms at the S1/S2 site of SARS-CoV-2 spike protein. PLoS ONE, 2022, 17, e0265453.	1.1	8
2	Antibodies Targeting KSHV gH/gL Reveal Distinct Neutralization Mechanisms. Viruses, 2022, 14, 541.	1.5	7
3	Plxdc family members are novel receptors for the rhesus monkey rhadinovirus (RRV). PLoS Pathogens, 2021, 17, e1008979.	2.1	8
4	SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Journal of Virology, 2021, 95, .	1.5	79
5	SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021, 184, 2384-2393.e12.	13.5	848
6	Interferon-Induced Transmembrane Proteins Inhibit Infection by the Kaposi's Sarcoma-Associated Herpesvirus and the Related Rhesus Monkey Rhadinovirus in a Cell-Specific Manner. MBio, 2021, 12, e0211321.	1.8	8
7	A Recombinant Rhesus Monkey Rhadinovirus Deleted of Glycoprotein L Establishes Persistent Infection of Rhesus Macaques and Elicits Conventional T Cell Responses. Journal of Virology, 2020, 94, .	1.5	3
8	Rhesus Monkey Rhadinovirus Isolated from Hemangioma Tissue. Microbiology Resource Announcements, 2020, 9, .	0.3	5
9	Kaposi Sarcoma in Mantled Guereza. Emerging Infectious Diseases, 2019, 25, 1552-1555.	2.0	1
10	EphA7 Functions as Receptor on BJAB Cells for Cell-to-Cell Transmission of the Kaposi's Sarcoma-Associated Herpesvirus and for Cell-Free Infection by the Related Rhesus Monkey Rhadinovirus. Journal of Virology, 2019, 93, .	1.5	29
11	Isolation and sequence analysis of a novel rhesus macaque foamy virus isolate with a serotype-1-like env. Archives of Virology, 2018, 163, 2507-2512.	0.9	5
12	A conserved Eph family receptor-binding motif on the gH/gL complex of Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus. PLoS Pathogens, 2018, 14, e1006912.	2.1	27
13	Gammaherpesviral Tegument Proteins, PML-Nuclear Bodies and the Ubiquitin-Proteasome System. Viruses, 2017, 9, 308.	1.5	9
14	Viral FGARAT Homolog ORF75 of Rhesus Monkey Rhadinovirus Effects Proteasomal Degradation of the ND10 Components SP100 and PML. Journal of Virology, 2016, 90, 8013-8028.	1.5	16
15	Reply to "On the Use of 2,5-Dimethyl-Pyrrol-1-yl-Benzoic Acid Derivatives as EPH-Ephrin Antagonists― Journal of Virology, 2014, 88, 12174-12174.	1.5	O
16	Binding of the Kaposi's Sarcoma-Associated Herpesvirus to the Ephrin Binding Surface of the EphA2 Receptor and Its Inhibition by a Small Molecule. Journal of Virology, 2014, 88, 8724-8734.	1.5	32
17	Rhesus Monkey Rhadinovirus Uses Eph Family Receptors for Entry into B Cells and Endothelial Cells but Not Fibroblasts. PLoS Pathogens, 2013, 9, e1003360.	2.1	50
18	The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi's sarcoma–associated herpesvirus. Nature Medicine, 2012, 18, 961-966.	15.2	172

ALEXANDER S HAHN

#	Article	IF	CITATIONS
19	The Kaposi's Sarcoma-associated Herpesvirus-encoded vIRF-3 Inhibits Cellular IRF-5. Journal of Biological Chemistry, 2009, 284, 8525-8538.	1.6	64
20	Kaposi's Sarcoma-Associated Herpesvirus gH/gL: Glycoprotein Export and Interaction with Cellular Receptors. Journal of Virology, 2009, 83, 396-407.	1.5	64
21	The viral interferon-regulatory factor-3 is required for the survival of KSHV-infected primary effusion lymphoma cells. Blood, 2008, 111, 320-327.	0.6	97