Ranjan Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178346/publications.pdf

Version: 2024-02-01

567281 501196 46 857 15 28 citations h-index g-index papers 47 47 47 726 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Intramolecular Charge Transfer as Probing Reaction:Â Fluorescence Monitoring of Proteinâ 'Surfactant Interaction. Journal of Physical Chemistry A, 1997, 101, 4042-4047.	2.5	76
2	Conquering 2-Aminopurine's Deficiencies: Highly Emissive Isomorphic Guanosine Surrogate Faithfully Monitors Guanosine Conformation and Dynamics in DNA. Journal of the American Chemical Society, 2015, 137, 3185-3188.	13.7	60
3	Energetic and Dynamic Aspects of Intramolecular Proton Transfer in 4-Methyl-2,6-diformylphenol:  A Detailed Analysis with AM1 Potential Energy Surfaces. Journal of Physical Chemistry A, 1997, 101, 293-298.	2.5	55
4	Fluorescent Amino Acid Undergoing Excited State Intramolecular Proton Transfer for Site-Specific Probing and Imaging of Peptide Interactions. Journal of Physical Chemistry B, 2015, 119, 2585-2595.	2.6	54
5	Excited State Proton Transfer and Solvent Relaxation of a 3-Hydroxyflavone Probe in Lipid Bilayers. Journal of Physical Chemistry B, 2008, 112, 11929-11935.	2.6	43
6	Unusually slow proton transfer dynamics of a 3-hydroxychromone dye in protic solvents. Photochemical and Photobiological Sciences, 2009, 8, 1583-1589.	2.9	41
7	Intramolecular proton transfer in the first-excited electronic states of 4-methyl-2,6-diformyl phenol in some hydrocarbon solvents. Chemical Physics Letters, 1993, 202, 549-554.	2.6	38
8	Proton Transfer in the Ground and Excited Electronic States of 4-Methyl-2,6-diformylphenol: Role of Alcoholic Solvents. Bulletin of the Chemical Society of Japan, 1993, 66, 2492-2497.	3.2	33
9	Excited State Proton Transfer Reaction as a Probe for the Microenvironment of a Binding Site of Bovine Serum Albumin:Â Effect of Urea. The Journal of Physical Chemistry, 1996, 100, 14514-14519.	2.9	33
10	Unraveling the Role of Monoolein in Fluidity and Dynamical Response of a Mixed Cationic Lipid Bilayer. Langmuir, 2019, 35, 4682-4692.	3.5	33
11	Sensing Micelle Hydration by Proton-Transfer Dynamics of a 3-Hydroxychromone Dye: Role of the Surfactant Headgroup and Chain Length. Langmuir, 2012, 28, 7147-7159.	3.5	26
12	Tuning excited-state proton transfer dynamics of a 3-hydroxychromone dye in supramolecular complexes via host–guest steric compatibility. Physical Chemistry Chemical Physics, 2014, 16, 776-784.	2.8	25
13	Emission spectra of 4-methyl-2,6-diacetylphenol in 3-methylpentane at room temperature and 77 K. Chemical Physics Letters, 1994, 228, 393-397.	2.6	20
14	A sensitive fluorescent probe for the polar solvation dynamics at protein–surfactant interfaces. Physical Chemistry Chemical Physics, 2017, 19, 12237-12245.	2.8	20
15	Oral drug delivery using a polymeric nanocarrier: chitosan nanoparticles in the delivery of rifampicin. Materials Advances, 2022, 3, 4622-4628.	5 . 4	20
16	Excitation wavelength and solvent dependent emission spectra in weakly polar aprotic solvents at room temperature and 77 K. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 1301-1308.	0.1	16
17	Polyethylene Glycol-Mediated Fusion of Extracellular Vesicles with Cationic Liposomes for the Design of Hybrid Delivery Systems. ACS Applied Bio Materials, 2021, 4, 8259-8266.	4.6	16
18	Selective and Fast Responsive Sensitized Micelle for Detection of Fluoride Level in Drinking Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 16355-16363.	6.7	15

#	Article	IF	Citations
19	Deciphering the response of asymmetry in the hydrophobic chains of novel cationic lipids towards biological function. Physical Chemistry Chemical Physics, 2020, 22, 1738-1746.	2.8	15
20	Flexibility modulates the catalytic activity of a thermostable enzyme: key information from optical spectroscopy and molecular dynamics simulation. Soft Matter, 2020, 16, 3050-3062.	2.7	15
21	Proton transfer and excitation-wavelenght-dependent fluorescence and phosphorescence spectra of 4-methyl-2,6-diformyl phenol: interaction with triethylamine. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 79, 49-54.	3.9	14
22	Complex formation and photophysical properties of luminol: solvent effects. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 87, 225-230.	3.9	14
23	Environment sensitive fluorescent analogue of biologically active oxazoles differentially recognizes human serum albumin and bovine serum albumin: Photophysical and molecular modeling studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 175, 191-199.	3.9	14
24	Photoinduced proton transfer in 3-methyl-6-hydroxy-m-phthalic acid. Journal of Luminescence, 1999, 81, 61-70.	3.1	13
25	Proton transfer reaction of 4-methyl-2,6-diacetylphenol and an analysis with AM1 potential-energy surfaces. Journal of Chemical Physics, 2001, 114, 1336-1343.	3.0	13
26	Modulation of Solvation and Molecular Recognition of a Lipid Bilayer under Dynamical Phase Transition. ChemPhysChem, 2018, 19, 2709-2716.	2.1	12
27	Probing relaxation dynamics of a cationic lipid based non-viral carrier: a time-resolved fluorescence study. RSC Advances, 2019, 9, 35549-35558.	3.6	12
28	Ground and excited state proton transfer of 4-methyl-2,6-diformylphenol in different solvent mixtures. Chemical Physics Letters, 1994, 221, 368-372.	2.6	11
29	Intramolecular proton transfer in the first excited singlet state of 4-methyl-2,6-diformylphenol: effect of non-polar and weakly polar aprotic solvents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 363-369.	3.9	11
30	Study of proton transfer reactions in binary solvent mixtures by steady state and nanosecond spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 1073-1081.	3.9	11
31	Differential flexibility leading to crucial microelastic properties of asymmetric lipid vesicles for cellular transfection: A combined spectroscopic and atomic force microscopy studies. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111363.	5.0	10
32	Ground―and Excited‧tate Proton Transfer in Some <i>o</i> â€Hydroxy Aromatic Compounds and Solvent Effect. Israel Journal of Chemistry, 1999, 39, 375-385.	2.3	9
33	Proton transfer reaction of 4-methyl-2,6-dicarbomethoxyphenol in nonpolar and weakly polar solvents. Journal of Chemical Physics, 2002, 117, 5280-5289.	3.0	9
34	Photophysical study of a charge transfer oxazole dye in micelles: Role of surfactant headgroups. Journal of Luminescence, 2015, 163, 21-27.	3.1	7
35	Picosecond Solvation Dynamics in Nanoconfinement: Role of Water and Host–Guest Complexation. Journal of Physical Chemistry B, 2018, 122, 3996-4005.	2.6	7
36	Dynamical solvent effect on the intramolecular proton transfer reaction of 4-methyl-2,6-diformylphenol in mixed solvents. Journal of Molecular Liquids, 1996, 68, 65-79.	4.9	5

#	Article	IF	CITATIONS
37	Slow solvation dynamics in supramolecular systems based on bile salts: Role of structural rigidity of bile salt aggregates. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 17-23.	3.9	5
38	Decoding the Kinetic Pathways toward a Lipid/DNA Complex of Alkyl Alcohol Cationic Lipids Formed in a Microfluidic Channel. Journal of Physical Chemistry B, 2022, 126, 588-600.	2.6	5
39	Modulation of Kinetic Pathways of Enzyme–Substrate Interaction in a Microfluidic Channel: Nanoscopic Water Dynamics as a Switch. Chemistry - A European Journal, 2019, 25, 9728-9736.	3.3	4
40	Host assisted molecular recognition by human serum albumin: Study of molecular recognition controlled protein/drug mimic binding in a microfluidic channel. International Journal of Biological Macromolecules, 2021, 176, 137-144.	7.5	4
41	Effect of the Alkyl Group of Some Alcohols on the Proton-Transfer Reaction of 4-Methyl-2,6-diformylphenol and its Interaction with Triethylamine Acta Chemica Scandinavica, 1995, 49, 469-474.	0.7	4
42	Essential Loop Dynamics Modulates Catalytic Activity in αâ€Chymotrypsin. ChemistrySelect, 2022, 7, .	1.5	3
43	Reversible photoswitching of spiropyran in biomolecular interfaces: A combined spectroscopy and computational study. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113958.	3.9	3
44	An Efficient Two-Step Synthesis of 2,5-Disubstituted Oxazole Derivatives Involving Cu-Promoted Carbon-Carbon Single Bond Formation. Asian Journal of Chemistry, 2016, 28, 1519-1522.	0.3	1
45	Hostâ∈Assisted Delivery of a Model Drug to Genomic DNA: Key Information from Ultrafast Spectroscopy and <i>in silico</i>	2.6	1
46	Pico-second resolved Förster resonance energy transfer (FRET) differentiates self-assembled biological macromolecules in aqueous medium. Chemical Physics Impact, 2022, 4, 100081.	3.5	1