
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178272/publications.pdf Version: 2024-02-01

Ροςλριο Μιιά+οτ

#	Article	IF	CITATIONS
1	Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 2009, 132, 79-90.	2.1	494
2	Extremely High Incidence of Antibiotic Resistance in Clinical Isolates of Streptococcus pneumoniae in Hungary. Journal of Infectious Diseases, 1991, 163, 542-548.	1.9	281
3	Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology, 2003, 84, 117-123.	2.1	224
4	Molecular methods for the detection of biogenic amine-producing bacteria on foods. International Journal of Food Microbiology, 2007, 117, 258-269.	2.1	195
5	Bioactive phenolic compounds of cowpeas (Vigna sinensisL). Modifications by fermentation with natural microflora and withLactobacillus plantarumATCC 14917. Journal of the Science of Food and Agriculture, 2005, 85, 297-304.	1.7	158
6	Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Critical Reviews in Food Science and Nutrition, 2016, 56, 1826-1843.	5.4	148
7	Tyramine and Phenylethylamine Biosynthesis by Food Bacteria. Critical Reviews in Food Science and Nutrition, 2012, 52, 448-467.	5.4	139
8	Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chemistry, 2008, 107, 1393-1398.	4.2	134
9	Tannase activity by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology, 2004, 96, 199-204.	2.1	133
10	Rational Coâ€Immobilization of Biâ€Enzyme Cascades on Porous Supports and their Applications in Bioâ€Redox Reactions with Inâ€Situ Recycling of Soluble Cofactors. ChemCatChem, 2012, 4, 1279-1288.	1.8	123
11	Characterization of a Feruloyl Esterase from Lactobacillus plantarum. Applied and Environmental Microbiology, 2013, 79, 5130-5136.	1.4	120
12	Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Critical Reviews in Food Science and Nutrition, 2008, 48, 697-714.	5.4	117
13	PCR Detection of Foodborne Bacteria Producing the Biogenic Amines Histamine, Tyramine, Putrescine, and Cadaverine. Journal of Food Protection, 2006, 69, 2509-2514.	0.8	112
14	Allelic Diversity and Population Structure in Oenococcus oeni as Determined from Sequence Analysis of Housekeeping Genes. Applied and Environmental Microbiology, 2004, 70, 7210-7219.	1.4	101
15	Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology (United Kingdom), 2006, 152, 85-93.	0.7	100
16	Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Molecular Microbiology, 2005, 56, 144-154.	1.2	99
17	Tannin Degradation by a Novel Tannase Enzyme Present in Some Lactobacillus plantarum Strains. Applied and Environmental Microbiology, 2014, 80, 2991-2997.	1.4	97
18	A Single Gene (tts) Located outside the cap Locus Directs the Formation of Streptococcus pneumoniae Type 37 Capsular Polysaccharide. Journal of Experimental Medicine, 1999, 190, 241-252.	4.2	96

#	Article	lF	CITATIONS
19	Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae : formation of binary encapsulated pneumococci and identification of cryptic dTDPâ€rhamnose biosynthesis genes. Molecular Microbiology, 1997, 25, 79-92.	1.2	94
20	Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chemistry, 2008, 107, 664-670.	4.2	94
21	Improvement of Enzyme Properties with a Two-Step Immobilizaton Process on Novel Heterofunctional Supports. Biomacromolecules, 2010, 11, 3112-3117.	2.6	93
22	Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiology Letters, 2005, 244, 367-372.	0.7	92
23	Identification of the ornithine decarboxylase gene in the putrescine-producerOenococcus oeniBIFI-83. FEMS Microbiology Letters, 2004, 239, 213-220.	0.7	88
24	Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chemistry, 2008, 107, 320-326.	4.2	84
25	Characterization of the <i>p</i> -Coumaric Acid Decarboxylase from Lactobacillus plantarum CECT 748 ^T . Journal of Agricultural and Food Chemistry, 2008, 56, 3068-3072.	2.4	81
26	Multiplex PCR Method for the Simultaneous Detection of Histamine-, Tyramine-, and Putrescine-Producing Lactic Acid Bacteria in Foods. Journal of Food Protection, 2005, 68, 874-878.	0.8	80
27	Production and Physicochemical Properties of Recombinant <i>Lactobacillus plantarum</i> Tannase. Journal of Agricultural and Food Chemistry, 2009, 57, 6224-6230.	2.4	79
28	First genetic characterization of a bacterial β-phenylethylamine biosynthetic enzyme in Enterococcus faecium RM58. FEMS Microbiology Letters, 2006, 258, 144-149.	0.7	77
29	In Vitro Removal of Ochratoxin A by Wine Lactic Acid Bacteria. Journal of Food Protection, 2007, 70, 2155-2160.	0.8	77
30	Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Science, 2013, 95, 272-280.	2.7	75
31	A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters. Applied and Environmental Microbiology, 2015, 81, 3235-3242.	1.4	75
32	Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International Journal of Food Microbiology, 2008, 121, 92-98.	2.1	74
33	Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. Journal of Functional Foods, 2014, 7, 322-329.	1.6	74
34	Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation. Applied and Environmental Microbiology, 2013, 79, 4253-4263.	1.4	72
35	Molecular basis of the optochin-sensitive phenotype of pneumococcus: characterization of the genes encoding the FOcomplex of the Streptococcus pneumoniae Streptococcus oralis H+-ATPases. Molecular Microbiology, 1994, 12, 587-598.	1.2	71
36	Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chemistry, 2010, 120, 225-229.	4.2	71

#	Article	IF	CITATIONS
37	A Rapid and Inexpensive Method for the Determination of Biogenic Amines from Bacterial Cultures by Thin-Layer Chromatography. Journal of Food Protection, 2005, 68, 625-629.	0.8	59
38	Evidence for Horizontal Gene Transfer as Origin of Putrescine Production in Oenococcus oeni RM83. Applied and Environmental Microbiology, 2006, 72, 7954-7958.	1.4	59
39	Fermentation as a Bio-Process To Obtain Functional Soybean Flours. Journal of Agricultural and Food Chemistry, 2007, 55, 8972-8979.	2.4	59
40	Characterization of coagulase-negative staphylococci isolated from Spanish dry cured meat products. Meat Science, 2013, 93, 387-396.	2.7	58
41	Food-Derived Peptides Stimulate Mucin Secretion and Gene Expression in Intestinal Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 8600-8605.	2.4	57
42	Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT - Food Science and Technology, 2015, 60, 246-252.	2.5	56
43	A multifactorial design for studying factors influencing growth and tyramine production of the lactic acid bacteria Lactobacillus brevis CECT 4669 and Enterococcus faecium BIFI-58. Research in Microbiology, 2006, 157, 417-424.	1.0	55
44	Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 617-624.	1.4	55
45	Biogenic amine production in Spanish dry-cured "chorizo―sausage treated with high-pressure and kept in chilled storage. Meat Science, 2007, 77, 365-371.	2.7	54
46	Molecular Screening of Wine Lactic Acid Bacteria Degrading Hydroxycinnamic Acids. Journal of Agricultural and Food Chemistry, 2009, 57, 490-494.	2.4	54
47	Current trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae. Research in Microbiology, 2000, 151, 429-435.	1.0	53
48	Degradation of Ochratoxin A by <i>Brevibacterium</i> Species. Journal of Agricultural and Food Chemistry, 2011, 59, 10755-10760.	2.4	53
49	Production of biogenic amines by lactic acid bacteria and enterobacteria isolated from fresh pork sausages packaged in different atmospheres and kept under refrigeration. Meat Science, 2011, 88, 368-373.	2.7	53
50	The arginine deiminase pathway in the wine lactic acid bacterium Lactobacillus hilgardii X 1 B: structural and functional study of the arcABC genes. Gene, 2002, 301, 61-66.	1.0	52
51	<i>>p</i> oumaric acid decarboxylase from <i>Lactobacillus plantarum</i> : Structural insights into the active site and decarboxylation catalytic mechanism. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1662-1676.	1.5	52
52	Fermentation of Vigna sinensis var. carilla Flours by Natural Microflora and Lactobacillus Species. Journal of Food Protection, 2003, 66, 2313-2320.	0.8	51
53	Effect of Processing on the Antioxidant Vitamins and Antioxidant Capacity ofVigna sinensisVar. Carilla. Journal of Agricultural and Food Chemistry, 2005, 53, 1215-1222.	2.4	51
54	High-Added-Value Antioxidants Obtained from the Degradation of Wine Phenolics by Lactobacillus plantarum. Journal of Food Protection, 2007, 70, 2670-2675.	0.8	50

#	Article	IF	CITATIONS
55	Ethylphenol Formation by Lactobacillus plantarum: Identification of the Enzyme Involved in the Reduction of Vinylphenols. Applied and Environmental Microbiology, 2018, 84, .	1.4	47
56	Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines. Talanta, 2010, 81, 925-933.	2.9	46
57	Deletion of BCY1 from the Saccharomyces cerevisiae Genome Is Semidominant and Induces Autolytic Phenotypes Suitable for Improvement of Sparkling Wines. Applied and Environmental Microbiology, 2006, 72, 2351-2358.	1.4	45
58	The pURI family of expression vectors: A versatile set of ligation independent cloning plasmids for producing recombinant His-fusion proteins. Protein Expression and Purification, 2011, 76, 44-53.	0.6	45
59	Bioactive Phenolic Compounds of Soybean (Glycine max cv. Merit): Modifications by Different Microbiological Fermentations. Polish Journal of Food and Nutrition Sciences, 2012, 62, 241-250.	0.6	44
60	Identification of atypical strains ofStreptococcus pneumoniae by a specific DNA probe. European Journal of Clinical Microbiology and Infectious Diseases, 1990, 9, 396-401.	1.3	43
61	Genomeâ€wide transcriptomic responses of a human isolate of <i><scp>L</scp>actobacillus plantarum</i> exposed to <i>p</i> â€coumaric acid stress. Molecular Nutrition and Food Research, 2012, 56, 1848-1859.	1.5	42
62	Enzymatic Synthesis and Characterization of Fructooligosaccharides and Novel Maltosylfructosides by Inulosucrase from Lactobacillus gasseri DSM 20604. Applied and Environmental Microbiology, 2013, 79, 4129-4140.	1.4	42
63	Screening of biogenic amine production by coagulase-negative staphylococci isolated during industrial Spanish dry-cured ham processes. Meat Science, 2007, 77, 556-561.	2.7	41
64	First molecular characterization of a uridine diphosphate galacturonate 4-epimerase: an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1. Molecular Microbiology, 1999, 31, 703-713.	1.2	40
65	Optochin-resistant variants of Streptococcus pneumoniae. Diagnostic Microbiology and Infectious Disease, 1990, 13, 63-66.	0.8	39
66	Bacterial tannases: classification and biochemical properties. Applied Microbiology and Biotechnology, 2019, 103, 603-623.	1.7	39
67	Biogenic amine production by bacteria isolated from ice-preserved sardine and mackerel. Food Control, 2012, 25, 89-95.	2.8	38
68	Characterization of a Cold-Active Esterase from <i>Lactobacillus plantarum</i> Suitable for Food Fermentations. Journal of Agricultural and Food Chemistry, 2014, 62, 5126-5132.	2.4	36
69	Multilocus sequence typing of oenological Saccharomyces cerevisiae strains. Food Microbiology, 2009, 26, 841-846.	2.1	35
70	Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation. Applied and Environmental Microbiology, 2017, 83, .	1.4	35
71	Unravelling the Reduction Pathway as an Alternative Metabolic Route to Hydroxycinnamate Decarboxylation in Lactobacillus plantarum. Applied and Environmental Microbiology, 2018, 84, .	1.4	35
72	Î ² -Lactam Antibiotic Resistance in Gram-Positive Bacterial Pathogens of the Upper Respiratory Tract: A Brief Overview of Mechanisms. Microbial Drug Resistance, 1995, 1, 103-109.	0.9	34

#	Article	IF	CITATIONS
73	Evaluation of bioprocesses to improve the antioxidant properties of chickpeas. LWT - Food Science and Technology, 2009, 42, 885-892.	2.5	34
74	Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. International Journal of Food Microbiology, 2011, 146, 212-216.	2.1	34
75	High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile β-trefoil lectin domain from the mushroom Laetiporus sulphureus. Clycobiology, 2011, 21, 1349-1361.	1.3	34
76	Hydrolysis of Tannic Acid Catalyzed by Immobilizedâ^'Stabilized Derivatives of Tannase from Lactobacillus plantarum. Journal of Agricultural and Food Chemistry, 2010, 58, 6403-6409.	2.4	33
77	An amperometric affinity penicillin-binding protein magnetosensor for the detection of β-lactam antibiotics in milk. Analyst, The, 2013, 138, 2013.	1.7	33
78	Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 217-224.	2.4	32
79	Biogenic amine production by Gram-positive bacteria isolated from Spanish dry-cured "chorizo― sausage treated with high pressure and kept in chilled storage. Meat Science, 2008, 80, 272-277.	2.7	32
80	Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from <i>LactobacillusÂplantarum</i> WCFS1. FEBS Journal, 2013, 280, 6658-6671.	2.2	32
81	Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development. Frontiers in Microbiology, 2014, 5, 684.	1.5	29
82	Molecular adaptation of Lactobacillus plantarum WCFS1 to gallic acid revealed by genome-scale transcriptomic signature and physiological analysis. Microbial Cell Factories, 2015, 14, 160.	1.9	28
83	Tannic Acid-Dependent Modulation of Selected Lactobacillus plantarum Traits Linked to Gastrointestinal Survival. PLoS ONE, 2013, 8, e66473.	1.1	28
84	Characterization of a Nitroreductase with Selective Nitroreduction Properties in the Food and Intestinal Lactic Acid Bacterium Lactobacillus plantarum WCFS1. Journal of Agricultural and Food Chemistry, 2009, 57, 10457-10465.	2.4	27
85	Bioproduction of 4-vinylphenol from corn cob alkaline hydrolyzate in two-phase extractive fermentation using free or immobilized recombinant E. coli expressing pad gene. Enzyme and Microbial Technology, 2014, 58-59, 22-28.	1.6	27
86	Effect of soaking and fermentation on content of phenolic compounds of soybean (<i>Glycine max</i>) Tj ETQqC and Nutrition, 2015, 66, 203-209.	0 0 rgBT 1.3	/Overlock 10 27
87	Complete nucleotide sequence and structural organization of pPB1, a small Lactobacillus plantarum cryptic plasmid that originated by modular exchange. Plasmid, 2004, 52, 203-211.	0.4	26
88	Evaluation of Exopolysaccharide Production by Leuconostoc mesenteroides Strains Isolated from Wine. Journal of Food Science, 2008, 73, M196-M199.	1.5	26
89	Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum. Food Chemistry, 2011, 128, 214-217.	4.2	26
90	A Functional Analysis of theStreptococcus pneumoniaeGenes Involved in the Synthesis of Type 1 and Type 3 Capsular Polysaccharides. Microbial Drug Resistance, 1997, 3, 73-88.	0.9	25

#	Article	IF	CITATIONS
91	Response of a <i>Lactobacillus plantarum</i> human isolate to tannic acid challenge assessed by proteomic analyses. Molecular Nutrition and Food Research, 2011, 55, 1454-1465.	1.5	24
92	Does Oenococcus oeni produce histamine?. International Journal of Food Microbiology, 2012, 157, 121-129.	2.1	24
93	Unravelling the diversity of glycoside hydrolase family 13 α-amylases from Lactobacillus plantarum WCFS1. Microbial Cell Factories, 2019, 18, 183.	1.9	24
94	Expression Vectors for Enzyme Restriction- and Ligation-Independent Cloning for Producing Recombinant His-Fusion Proteins. Biotechnology Progress, 2008, 23, 680-686.	1.3	23
95	Esterase LpEst1 from Lactobacillus plantarum: A Novel and Atypical Member of the αβ Hydrolase Superfamily of Enzymes. PLoS ONE, 2014, 9, e92257.	1.1	23
96	Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis. Journal of Dairy Science, 2014, 97, 6737-6744.	1.4	23
97	Molecular cloning and functional characterization of a histidine decarboxylase from Staphylococcus capitis. Journal of Applied Microbiology, 2007, 104, 071003000434006-???.	1.4	22
98	Effect of fermentation conditions on the antioxidant compounds and antioxidant capacity of Lupinus angustifolius cv. zapaton. European Food Research and Technology, 2008, 227, 979-988.	1.6	22
99	Cloning, production, purification and preliminary crystallographic analysis of a glycosidase from the food lactic acid bacterium Lactobacillus plantarum CECT 748T. Protein Expression and Purification, 2009, 68, 177-182.	0.6	22
100	Integrated Amperometric Affinity Biosensors Using Co ²⁺ –Tetradentate Nitrilotriacetic Acid Modified Disposable Carbon Electrodes: Application to the Determination of β-Lactam Antibiotics. Analytical Chemistry, 2013, 85, 3246-3254.	3.2	22
101	The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum. Frontiers in Microbiology, 2016, 7, 1118.	1.5	22
102	The Tyrosine Decarboxylation Test Does Not Differentiate Enterococcus faecalis from Enterococcus faecium. Systematic and Applied Microbiology, 2004, 27, 423-426.	1.2	21
103	PCR methods for the detection of biogenic amine-producing bacteria on wine. Annals of Microbiology, 2011, 61, 159-166.	1.1	21
104	Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T. Bioresource Technology, 2012, 117, 274-285.	4.8	21
105	Characterization of a Second Ornithine Decarboxylase Isolated from Morganella morganii. Journal of Food Protection, 2008, 71, 657-661.	0.8	20
106	Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Applied Microbiology and Biotechnology, 2014, 98, 6329-37.	1.7	20
107	A Diverse Range of Human Gut Bacteria Have the Potential To Metabolize the Dietary Component Gallic Acid. Applied and Environmental Microbiology, 2018, 84, .	1.4	20
108	Evidence for horizontal transfer from streptococcus to escherichia coli of the kfid gene encoding the K5-specific UDP-glucose dehydrogenase. Journal of Molecular Evolution, 1998, 46, 432-436.	0.8	19

#	Article	IF	CITATIONS
109	Characterisation of a cold-active and salt-tolerant esterase from Lactobacillus plantarum with potential application during cheese ripening. International Dairy Journal, 2014, 39, 312-315.	1.5	19
110	Characterization of a Versatile Arylesterase from <i>Lactobacillus plantarum</i> Active on Wine Esters. Journal of Agricultural and Food Chemistry, 2014, 62, 5118-5125.	2.4	19
111	Improving Properties of a Novel β-Galactosidase from Lactobacillus plantarum by Covalent Immobilization. Molecules, 2015, 20, 7874-7889.	1.7	19
112	Crystal Structure of the Hexameric Catabolic Ornithine Transcarbamylase from Lactobacillus hilgardii: Structural Insights into the Oligomeric Assembly and Metal Binding. Journal of Molecular Biology, 2009, 393, 425-434.	2.0	17
113	Sequencing, Characterization, and Gene Expression Analysis of the Histidine Decarboxylase Gene Cluster of Morganella morganii. Current Microbiology, 2014, 68, 404-411.	1.0	17
114	Valorization of Cheese and Tofu Whey through Enzymatic Synthesis of Lactosucrose. PLoS ONE, 2015, 10, e0139035.	1.1	17
115	Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase. Applied Microbiology and Biotechnology, 2016, 100, 6251-6263.	1.7	17
116	Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. Microbial Cell Factories, 2018, 17, 33.	1.9	17
117	Efficacy of recA gene sequence analysis in the identification and discrimination of Lactobacillus hilgardii strains isolated from stuck wine fermentations. International Journal of Food Microbiology, 2007, 115, 70-78.	2.1	16
118	Molecular Bases of Three Characteristic Phenotypes of Pneumococcus: Optochin-Sensitivity, Coumarin-Sensitivity, and Quinolone-Resistance. Microbial Drug Resistance, 1997, 3, 177-193.	0.9	15
119	Characterization of a Benzyl Alcohol Dehydrogenase from Lactobacillus plantarum WCFS1. Journal of Agricultural and Food Chemistry, 2008, 56, 4497-4503.	2.4	15
120	Effect of growth phase on the adherence to and invasion of Caco-2 epithelial cells by Campylobacter. International Journal of Food Microbiology, 2010, 140, 14-18.	2.1	15
121	Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus. Microbial Cell Factories, 2014, 13, 154.	1.9	15
122	Production of α-rhamnosidases from Lactobacillus plantarum WCFS1 and their role in deglycosylation of dietary flavonoids naringin and rutin. International Journal of Biological Macromolecules, 2021, 193, 1093-1102.	3.6	15
123	Cloning of the Authentic Bovine Gene Encoding Pepsinogen A and Its Expression in Microbial Cells. Applied and Environmental Microbiology, 2004, 70, 2588-2595.	1.4	14
124	Gene organization of the ornithine decarboxylase-encoding region in Morganella morganii. Journal of Applied Microbiology, 2007, 102, 1551-1560.	1.4	14
125	Improvement of the fermentation performance of <i>Lactobacillus plantarum</i> by the flavanol catechin is uncoupled from its degradation. Journal of Applied Microbiology, 2010, 109, 687-697.	1.4	14
126	Use of recA gene sequence analysis for the identification of Staphylococcus equorum strains predominant on dry-cured hams. Food Microbiology, 2011, 28, 1205-1210.	2.1	14

#	Article	IF	CITATIONS
127	Biotransformation of Phenolics by Lactobacillus plantarum in Fermented Foods. , 2017, , 63-83.		14
128	Hydrolysis of Lactose and Transglycosylation of Selected Sugar Alcohols by LacA β-Galactosidase from <i>Lactobacillus plantarum</i> WCFS1. Journal of Agricultural and Food Chemistry, 2020, 68, 7040-7050.	2.4	14
129	pH and dose-dependent effects of quercetin on the fermentation capacity of Lactobacillus plantarum. LWT - Food Science and Technology, 2010, 43, 926-933.	2.5	12
130	Transcriptional Reprogramming at Genome-Scale of Lactobacillus plantarum WCFS1 in Response to Olive Oil Challenge. Frontiers in Microbiology, 2017, 8, 244.	1.5	12
131	Transcriptomeâ€Based Analysis in <i>Lactobacillus plantarum</i> WCFS1 Reveals New Insights into Resveratrol Effects at System Level. Molecular Nutrition and Food Research, 2018, 62, e1700992.	1.5	11
132	The use of <i>Lactobacillus plantarum</i> esterase genes: a biotechnological strategy to increase the bioavailability of dietary phenolic compounds in lactic acid bacteria. International Journal of Food Sciences and Nutrition, 2021, 72, 1035-1045.	1.3	11
133	Enzymatic Synthesis and Structural Characterization of Theanderose through Transfructosylation Reaction Catalyzed by Levansucrase from <i>Bacillus subtilis</i> CECT 39. Journal of Agricultural and Food Chemistry, 2017, 65, 10505-10513.	2.4	10
134	Degradation of phenolic compounds found in olive products by Lactobacillus plantarum strains. , 2021, , 133-144.		10
135	Contribution of a tannase from Atopobium parvulum DSM 20469T in the oral processing of food tannins. Food Research International, 2014, 62, 397-402.	2.9	9
136	Synthesis of potentially-bioactive lactosyl-oligofructosides by a novel bi-enzymatic system using bacterial fructansucrases. Food Research International, 2015, 78, 258-265.	2.9	9
137	Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An α-galactosidase displaying regioselective transgalactosylation. International Journal of Biological Macromolecules, 2020, 153, 1070-1079.	3.6	9
138	Characterization of ISLpl4, a functional insertion sequence in Lactobacillus plantarum. Gene, 2005, 363, 202-210.	1.0	8
139	Overexpression, purification, crystallization and preliminary structural studies ofp-coumaric acid decarboxylase fromLactobacillus plantarum. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 300-303.	0.7	8
140	Degradation of Phenolic Compounds Found in Olive Products by Lactobacillus plantarum Strains. , 2010, , 387-396.		8
141	Oleuropein Transcriptionally Primes Lactobacillus plantarum to Interact With Plant Hosts. Frontiers in Microbiology, 2019, 10, 2177.	1.5	8
142	The commensal bacterium <i>Lactiplantibacillus plantarum</i> imprints innate memory-like responses in mononuclear phagocytes. Gut Microbes, 2021, 13, 1939598.	4.3	8
143	Transcriptomic Evidence of Molecular Mechanisms Underlying the Response of Lactobacillus plantarum WCFS1 to Hydroxytyrosol. Antioxidants, 2020, 9, 442.	2.2	8
144	The crystal structure of galactitolâ€1â€phosphate 5â€dehydrogenase from <i>Escherichia coli</i> K12 provides insights into its anomalous behavior on IMAC processes. FEBS Letters, 2012, 586, 3127-3133.	1.3	7

#	Article	IF	CITATIONS
145	Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by <i>Lactobacillus plantarum</i> WCFS1 MelA α-Galactosidase. Journal of Agricultural and Food Chemistry, 2021, 69, 955-965.	2.4	7
146	Molecular Responses of Lactobacilli to Plant Phenolic Compounds: A Comparative Review of the Mechanisms Involved. Antioxidants, 2022, 11, 18.	2.2	7
147	Enantioselective oxidation of galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from <i>Escherichia coli</i> . Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1540-1554.	2.5	6
148	Structural basis of the substrate specificity and instability in solution of a glycosidase from Lactobacillus plantarum. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1227-1236.	1.1	6
149	Delaying Effect of a Wine <i>Lactobacillus plantarum</i> Strain on the Coloration and Xanthylium Pigment Formation Occurring in (+)-Catechin and (â°)-Epicatechin Wine Model Solutions. Journal of Agricultural and Food Chemistry, 2010, 58, 11318-11324.	2.4	5
150	Lactic Acid Bacteria. , 2011, , 191-226.		5
151	Chemical Modification of Novel Glycosidases from Lactobacillus plantarum Using Hyaluronic Acid: Effects on High Specificity against 6-Phosphate Glucopyranoside. Coatings, 2019, 9, 311.	1.2	5
152	Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase fromLactobacillus hilgardii. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 563-567.	0.7	3
153	Production of Wine Starter Cultures. , 2011, , 279-302.		3
154	Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase from <i>Lactobacillus plantarum</i> WCFS1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1436-1439.	0.7	3
155	A structurally unique Fusobacterium nucleatum tannase provides detoxicant activity against gallotannins and pathogen resistance. Microbial Biotechnology, 2020, , .	2.0	3
156	Production and Digestibility Studies of β-Galactosyl Xylitol Derivatives Using Heterogeneous Catalysts of LacA β-Galactosidase from Lactobacillus Plantarum WCFS1. Molecules, 2022, 27, 1235.	1.7	1
157	Geranyl Functionalized Materials for Site-Specific Co-Immobilization of Proteins. Molecules, 2021, 26, 3028.	1.7	0