Kay D Bidle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9178007/publications.pdf

Version: 2024-02-01

63	5,434	35	63
papers	citations	h-index	g-index
63	63	63	5463
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology, 2014, 12, e1001889.	2.6	885
2	Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 1999, 397, 508-512.	13.7	476
3	Cell death in planktonic, photosynthetic microorganisms. Nature Reviews Microbiology, 2004, 2, 643-655.	13.6	300
4	The demise of the marine cyanobacterium, <i>Trichodesmium</i> spp., via an autocatalyzed cell death pathway. Limnology and Oceanography, 2004, 49, 997-1005.	1.6	254
5	Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton. Science, 2009, 326, 861-865.	6.0	229
6	Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19327-19332.	3.3	189
7	Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6049-6054.	3.3	167
8	Bacterial control of silicon regeneration from diatom detritus: Significance of bacterial ectohydrolases and species identity. Limnology and Oceanography, 2001, 46, 1606-1623.	1.6	163
9	Programmed Cell Death in Unicellular Phytoplankton. Current Biology, 2016, 26, R594-R607.	1.8	145
10	Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13455-13460.	3.3	141
11	The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton. Annual Review of Marine Science, 2015, 7, 341-375.	5.1	131
12	A Diatom Gene Regulating Nitric-Oxide Signaling and Susceptibility to Diatom-Derived Aldehydes. Current Biology, 2008, 18, 895-899.	1.8	126
13	Coccolithovirus facilitation of carbon export in the North Atlantic. Nature Microbiology, 2018, 3, 537-547.	5.9	114
14	Regulation of Oceanic Silicon and Carbon Preservation by Temperature Control on Bacteria. Science, 2002, 298, 1980-1984.	6.0	112
15	The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview. Frontiers in Marine Science, 2019, 6, .	1.2	111
16	Iron Starvation and Culture Age Activate Metacaspases and Programmed Cell Death in the Marine Diatom <i>Thalassiosira pseudonana</i> Lukaryotic Cell, 2008, 7, 223-236.	3.4	110
17	Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom. Current Biology, 2014, 24, 2041-2046.	1.8	110
18	The balance between silica production and silica dissolution in the sea: Insights from Monterey Bay, California, applied to the global data set. Limnology and Oceanography, 2003, 48, 1846-1854.	1.6	92

#	Article	IF	CITATIONS
19	A chemical arms race at sea mediates algal host–virus interactions. Current Opinion in Microbiology, 2011, 14, 449-457.	2.3	84
20	Programmed cell death in the marine cyanobacterium <i>Trichodesmium</i> mediates carbon and nitrogen export. ISME Journal, 2013, 7, 2340-2348.	4.4	81
21	Wholeâ€genome expression analysis reveals a role for deathâ€related genes in stress acclimation of the diatom <i>Thalassiosira pseudonana</i> . Environmental Microbiology, 2012, 14, 67-81.	1.8	80
22	Infection of phytoplankton by aerosolized marine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6643-6647.	3.3	79
23	Diminished efficiency in the oceanic silica pump caused by bacteriaâ€mediated silica dissolution. Limnology and Oceanography, 2003, 48, 1855-1868.	1.6	78
24	The multiple fates of sinking particles in the North Atlantic Ocean. Global Biogeochemical Cycles, 2015, 29, 1471-1494.	1.9	76
25	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
26	Novel molecular determinants of viral susceptibility and resistance in the lipidome of <scp><i>E</i></scp> <i>miliania huxleyi</i> <. Environmental Microbiology, 2014, 16, 1137-1149.	1.8	68
27	Low <scp>CO</scp> ₂ results in a rearrangement of carbon metabolism to support C ₄ photosynthetic carbon assimilation in <i>Thalassiosira pseudonana</i> Phytologist, 2014, 204, 507-520.	3.5	67
28	Silicon limitation facilitates virus infection and mortality of marine diatoms. Nature Microbiology, 2019, 4, 1790-1797.	5.9	64
29	<i>ln situ</i> survey of life cycle phases of the coccolithophore <i>Emiliania huxleyi</i> (<i>Haptophyta</i>). Environmental Microbiology, 2012, 14, 1558-1569.	1.8	62
30	Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5909-5914.	3.3	54
31	Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export. ISME Journal, 2018, 12, 704-713.	4.4	53
32	Interrogating marine virusâ€host interactions and elemental transfer with BONCAT and nanoSIMSâ€based methods. Environmental Microbiology, 2018, 20, 671-692.	1.8	53
33	Attenuation of virus production at high multiplicities of infection in Aureococcus anophagefferens. Virology, 2014, 466-467, 71-81.	1.1	50
34	Isolation and characterization of lipid rafts in <scp><i>E</i></scp> <i>miliania huxleyi</i> : a role for membrane microdomains in host–virus interactions. Environmental Microbiology, 2014, 16, 1150-1166.	1.8	46
35	Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20123-20128.	3.3	43
36	An updated method for the calibration of transparent exopolymer particle measurements. Limnology and Oceanography: Methods, 2018, 16, 621-628.	1.0	37

#	Article	IF	CITATIONS
37	Dynamics of transparent exopolymer particle production and aggregation during viral infection of the coccolithophore, <i>Emiliania huxleyi</i> i>Environmental Microbiology, 2018, 20, 2880-2897.	1.8	30
38	Light regulation of coccolithophore host–virus interactions. New Phytologist, 2019, 221, 1289-1302.	3 . 5	29
39	Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae). PLoS ONE, 2014, 9, e112134.	1.1	29
40	Mechanisms of & amp; It; i& amp; gt; Trichodes mium & amp; It; /i& amp; gt; demise within the New Caledonian lagoon during the VAHINE mesocosm experiment. Biogeosciences, 2016, 13, 4187-4203.	1.3	28
41	Temperate infection in a virus–host system previously known for virulent dynamics. Nature Communications, 2020, 11, 4626.	5.8	28
42	Tantalizing evidence for caspaseâ€ike protein expression and activity in the cellular stress response of <i>Archaea</i> . Environmental Microbiology, 2010, 12, 1161-1172.	1.8	24
43	Quantification of nitrogenase in <i>Trichodesmium</i> IMS 101: implications for iron limitation of nitrogen fixation in the ocean. Environmental Microbiology Reports, 2011, 3, 54-58.	1.0	24
44	Virusâ€induced spore formation as a defense mechanism in marine diatoms. New Phytologist, 2021, 229, 2251-2259.	3.5	24
45	The mutual interplay between calcification and coccolithovirus infection. Environmental Microbiology, 2019, 21, 1896-1915.	1.8	23
46	Metacaspase involvement in programmed cell death of the marine cyanobacterium <i>Trichodesmium </i> . Environmental Microbiology, 2019, 21, 667-681.	1.8	23
47	Nitric oxide production and antioxidant function during viral infection of the coccolithophore <i>Emiliania huxleyi</i> . ISME Journal, 2019, 13, 1019-1031.	4.4	20
48	ASSESSING THE ROLE OF CASPASE ACTIVITY AND METACASPASE EXPRESSION ON VIRAL SUSCEPTIBILITY OF THE COCCOLITHOPHORE, <i>><scp>E</scp>MILIANIA HUXLEYI</i> (HAPTOPHYTA). Journal of Phycology, 2012, 48, 1079-1089.	1.0	19
49	Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nature Communications, 2021, 12, 6634.	5.8	19
50	Decoupling atmospheric and oceanic factors affecting aerosol loading over a cluster of mesoscale North Atlantic eddies. Geophysical Research Letters, 2014, 41, 4075-4081.	1.5	13
51	A liposome-encapsulated spin trap for the detection of nitric oxide. Free Radical Biology and Medicine, 2016, 96, 199-210.	1.3	12
52	Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean. Limnology and Oceanography, 2017, 62, 1066-1079.	1.6	12
53	Biochemical diversity of glycosphingolipid biosynthesis as a driver of <i>Coccolithovirus</i> competitive ecology. Environmental Microbiology, 2019, 21, 2182-2197.	1.8	12
54	Elucidating marine virus ecology through a unified heartbeat. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15606-15607.	3.3	10

#	Article	IF	CITATIONS
55	Density dependent expression of a diatom retrotransposon. Marine Genomics, 2010, 3, 145-150.	0.4	9
56	Specificity of archaeal caspase activity in the extreme halophile <i><scp>H</scp>aloferax volcanii</i> Environmental Microbiology Reports, 2013, 5, 263-271.	1.0	9
57	Virus infection of Haptolina ericina and Phaeocystis pouchetii implicates evolutionary conservation of programmed cell death induction in marine haptophyte–virus interactions. Journal of Plankton Research, 2014, 36, 943-955.	0.8	8
58	The Possession of Coccoliths Fails to Deter Microzooplankton Grazers. Frontiers in Marine Science, 2020, 7, .	1.2	8
59	Stress, death, and the biological glue of sinking matter. Journal of Phycology, 2017, 53, 241-244.	1.0	6
60	The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current. Limnology and Oceanography, 2020, 65, 1974-1989.	1.6	5
61	Catalytic linkage between caspase activity and proteostasis in <i>Archaea</i> . Environmental Microbiology, 2019, 21, 286-298.	1.8	4
62	Genomic DNA Extracted from Ancient Antarctic Glacier Ice for Molecular Analyses on the Indigenous Microbial Communities. Ocean and Polar Research, 2005, 27, 205-214.	0.3	3
63	BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature. PLoS ONE, 2015, 10, e0144686.	1.1	2