Jean Franã\sois Gohy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9177438/publications.pdf

Version: 2024-02-01

223 papers 11,595 citations

²⁶⁶³⁰
56
h-index

94 g-index

228 all docs 228 docs citations

times ranked

228

10746 citing authors

#	Article	IF	CITATIONS
1	Lubrication by charged polymers. Nature, 2003, 425, 163-165.	27.8	791
2	Photo-responsive block copolymer micelles: design and behavior. Chemical Society Reviews, 2013, 42, 7117.	38.1	480
3	Block Copolymer Micelles. , 0, , 65-136.		458
4	Lightâ€Responsive Block Copolymers. Macromolecular Rapid Communications, 2010, 31, 1588-1607.	3.9	304
5	Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Scientific Reports, 2014, 4, 4315.	3.3	274
6	Photo-responsive polymers: synthesis and applications. Polymer Chemistry, 2017, 8, 52-73.	3.9	273
7	Core-Shell-Corona Micelles with a Responsive Shell. Angewandte Chemie - International Edition, 2001, 40, 3214-3216.	13.8	216
8	Poly(TEMPO)/Zinc Hybridâ€Flow Battery: A Novel, "Green,―High Voltage, and Safe Energy Storage System. Advanced Materials, 2016, 28, 2238-2243.	21.0	210
9	Water-Soluble Complexes Formed by Poly(2-vinylpyridinium)-block-poly(ethylene oxide) and Poly(sodium methacrylate)-block-poly(ethylene oxide) Copolymers. Macromolecules, 2001, 34, 3361-3366.	4.8	192
10	Aggregates Formed by Amphoteric Diblock Copolymers in Water. Macromolecules, 2000, 33, 6378-6387.	4.8	175
11	Metallo-Supramolecular Block Copolymers. Advanced Materials, 2007, 19, 1665-1673.	21.0	162
12	Reversible Chemical Patterning on Stimuli-Responsive Polymer Film:  Environment-Responsive Lithography. Journal of the American Chemical Society, 2003, 125, 8302-8306.	13.7	158
13	Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules, 2002, 35, 9748-9755.	4.8	150
14	Nanoscale Control of Polymer Crystallization by Nanoimprint Lithography. Nano Letters, 2005, 5, 1738-1743.	9.1	142
15	Metallo-Supramolecular Block Copolymer Micellesâ€. Macromolecules, 2002, 35, 4560-4563.	4.8	136
16	Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines:Â A Powerful Method for the Synthesis of Amphiphilic Triblock Copolymers. Macromolecules, 2006, 39, 4719-4725.	4.8	131
17	Tuning of the Morphology of Coreâ [^] 'Shellâ [^] 'Corona Micelles in Water. I. Transition from Sphere to Cylinder. Macromolecules, 2004, 37, 1089-1094.	4.8	129
18	Water-Soluble Complexes Formed by Sodium Poly(4-styrenesulfonate) and a Poly(2-vinylpyridinium)-block-poly(ethyleneoxide) Copolymer. Macromolecules, 2000, 33, 9298-9305.	4.8	124

#	Article	IF	Citations
19	pH-Dependent Micellization of Poly(2-vinylpyridine)-block-poly((dimethylamino)ethyl methacrylate) Diblock Copolymers. Macromolecules, 2001, 34, 7435-7440.	4.8	121
20	A versatile strategy for the synthesis of block copolymers bearing a photocleavable junction. Polymer Chemistry, 2010, 1, 161-163.	3.9	120
21	Cylindrical Micelles from the Aqueous Self-Assembly of an Amphiphilic Poly(ethylene) Tj ETQq1 1 0.784314 rgBT the Block Junction. Chemistry - A European Journal, 2004, 10, 4315-4323.	/Overlock 3.3	10 Tf 50 667 119
22	Dithioesters and Trithiocarbonates as Anchoring Groups for the "Grafting-To―Approach. Macromolecules, 2006, 39, 2729-2731.	4.8	118
23	Roll up nanowire battery from silicon chips. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15168-15173.	7.1	118
24	Solvent-Induced Morphological Transition in Core-Cross-Linked Block Copolymer Micelles. Journal of the American Chemical Society, 2006, 128, 3784-3788.	13.7	117
25	Combinatorial Synthesis of Star-Shaped Block Copolymers:  Hostâ^'Guest Chemistry of Unimolecular Reversed Micelles. Journal of the American Chemical Society, 2004, 126, 11517-11521.	13.7	113
26	Covalent vs Metallo-supramolecular Block Copolymer Micelles. Macromolecules, 2002, 35, 7427-7435.	4.8	112
27	Reversible Metallo-Supramolecular Block Copolymer Micelles Containing a Soft Core. Macromolecular Rapid Communications, 2002, 23, 555.	3.9	110
28	A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds. Chemical Science, 2019, 10, 418-426.	7.4	108
29	From Supramolecular Block Copolymers to Advanced Nano-Objects. Chemistry - A European Journal, 2003, 9, 3472-3479.	3.3	104
30	Nanoporous Thin Films from Self-Assembled Metallo- Supramolecular Block Copolymers. Advanced Materials, 2005, 17, 1162-1165.	21.0	97
31	Star-Block Copolymers as Templates for the Preparation of Stable Gold Nanoparticles. Langmuir, 2005, 21, 7995-8000.	3.5	96
32	Janus particles: from synthesis to application. Colloid and Polymer Science, 2017, 295, 2083-2108.	2.1	93
33	Normal and Frictional Forces between Surfaces Bearing Polyelectrolyte Brushes. Langmuir, 2008, 24, 8678-8687.	3.5	91
34	Self-Assembling Doxorubicin–Tocopherol Succinate Prodrug as a New Drug Delivery System: Synthesis, Characterization, and <i>in Vitro</i> and <i>in Vivo</i> Anticancer Activity. Bioconjugate Chemistry, 2014, 25, 72-81.	3.6	81
35	Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polymer Chemistry, 2016, 7, 1711-1718.	3.9	81
36	Linear Viscoelastic Rheology of Moderately Entangled Telechelic Polybutadiene Temporary Networks. Macromolecules, 2009, 42, 6181-6192.	4.8	79

#	Article	IF	CITATIONS
37	Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11839-11846.	10.3	78
38	Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. Journal of Materials Chemistry A, 2015, 3, 8832-8839.	10.3	77
39	Solubility behavior of amphiphilic block and random copolymers based on 2â€ethylâ€2â€oxazoline and 2â€nonylâ€2â€oxazoline in binary water–ethanol mixtures. Journal of Polymer Science Part A, 2009, 47, 515-522.	2.3	76
40	A schizophrenic gradient copolymer: switching and reversing poly(2-oxazoline) micelles based on UCST and subtle solvent changes. Soft Matter, 2009, 5, 3590.	2.7	76
41	Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties. Journal of Materials Chemistry, 2010, 20, 4333.	6.7	74
42	Tuning the morphologies of amphiphilic metallo-supramolecular triblock terpolymers: from spherical micelles to switchable vesicles. Soft Matter, 2009, 5, 84-91.	2.7	73
43	Single-ion diblock copolymers for solid-state polymer electrolytes. Polymer, 2015, 68, 344-352.	3.8	71
44	Synthesis and Aqueous Micellization of Amphiphilic Tetrablock Ter- and Quarterpoly(2-oxazoline)s. Macromolecules, 2007, 40, 2837-2843.	4.8	69
45	Star-shaped block copolymer stabilized palladium nanoparticles for efficient catalytic Heck cross-coupling reactions. Journal of Materials Chemistry, 2006, 16, 3001.	6.7	68
46	Tuning the Hydrophilicity of Gold Nanoparticles Templated in Star Block Copolymers. Langmuir, 2006, 22, 6690-6695.	3.5	67
47	Polymeric Micelles Induced by Interpolymer Complexation. Macromolecular Rapid Communications, 2009, 30, 1871-1888.	3.9	67
48	Dilution-Induced Spheres-to-Vesicles Morphological Transition in Micelles from Block Copolymer/Surfactant Complexes. Journal of the American Chemical Society, 2005, 127, 6526-6527.	13.7	65
49	Segregation of Coronal Chains in Micelles Formed by Supramolecular Interactions. Macromolecular Rapid Communications, 2004, 25, 1536-1539.	3.9	64
50	Self-association of double-hydrophilic copolymers of acrylic acid and poly(ethylene oxide) macromonomer. Polymer, 2004, 45, 8303-8310.	3.8	62
51	Supramolecular Self-Assembled Ni(II), Fe(II), and Co(II) ABA Triblock Copolymers. Macromolecules, 2008, 41, 2771-2777.	4.8	61
52	Supramolecular ABA Triblock Copolymers via a Polycondensation Approach:Â Synthesis, Characterization, and Micelle Formation. Macromolecules, 2006, 39, 1569-1576.	4.8	60
53	Polymer Gels Constructed Through Metal–Ligand Coordination. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 24-40.	3.7	59
54	Meltâ€Polymerization of TEMPO Methacrylates with Nano Carbons Enables Superior Battery Materials. ChemSusChem, 2015, 8, 1692-1696.	6.8	59

#	Article	IF	Citations
55	Synthesis of Poly(2-ethyl-2-oxazoline)- $\langle i \rangle$ b $\langle i \rangle$ -poly(styrene) Copolymers via a Dual Initiator Route Combining Cationic Ring-Opening Polymerization and Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 5210-5215.	4.8	58
56	Connecting micelles by metallo-supramolecular interactions: towards stimuli responsive hierarchical materials. Soft Matter, 2009, 5, 3409.	2.7	58
57	Exploring the potential of polymer battery cathodes with electrically conductive molecular backbone. Journal of Materials Chemistry A, 2015, 3, 11189-11193.	10.3	58
58	Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(vinylidene fluoride) and Poly(ethylene glycol): Synthesis and Characterization. Macromolecules, 2018, 51, 2476-2488.	4.8	57
59	Synthesis of nitroxideâ€containing block copolymers for the formation of organic cathodes. Journal of Polymer Science Part A, 2013, 51, 101-108.	2.3	56
60	Metallo-supramolecular diblock copolymers based on heteroleptic cobalt(iii) and nickel(ii) bis-terpyridine complexes. Chemical Communications, 2010, 46, 1296.	4.1	54
61	Aqueous Micelles from Supramolecular Graft Copolymers. Macromolecular Chemistry and Physics, 2003, 204, 1524-1530.	2.2	53
62	Are <i>>o</i> â€nitrobenzyl (meth)acrylate monomers polymerizable by controlledâ€radical polymerization?. Journal of Polymer Science Part A, 2009, 47, 6504-6513.	2.3	51
63	Metallo-supramolecular block copolymer micelles. Coordination Chemistry Reviews, 2009, 253, 2214-2225.	18.8	51
64	Normal and shear forces between a polyelectrolyte brush and a solid surface. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 193-204.	2.1	50
65	Carbon Redox-Polymer-Gel Hybrid Supercapacitors. Scientific Reports, 2016, 6, 22194.	3.3	49
66	Morphology of Water-Soluble Interpolyelectrolyte Complexes Formed by Poly(2-vinylpyridinium)-block-poly(ethylene oxide) Diblocks and Poly(4-styrenesulfonate) Polyanions. Macromolecules, 2001, 34, 2745-2747.	4.8	48
67	Controlled thermoreversible transfer of poly(oxazoline) micelles between an ionic liquid and water. Chemical Communications, 2008, , 2753.	4.1	48
68	Surface Coating Mediated Swelling and Fracture of Silicon Nanowires during Lithiation. ACS Nano, 2014, 8, 9427-9436.	14.6	48
69	Synthesis and selfâ€assembly of diblock copolymers bearing 2â€nitrobenzyl photocleavable side groups. Journal of Polymer Science Part A, 2012, 50, 599-608.	2.3	47
70	Polymeric nanocontainers with high loading capacity of hydrophobic drugs. Soft Matter, 2009, 5, 1662.	2.7	46
71	Synthesis and pH-dependent micellization of diblock copolymer mixtures. Journal of Colloid and Interface Science, 2009, 329, 235-243.	9.4	45
72	Micellar Cathodes from Selfâ€Assembled Nitroxideâ€Containing Block Copolymers in Battery Electrolytes. Macromolecular Rapid Communications, 2014, 35, 228-233.	3.9	45

#	Article	IF	CITATIONS
73	Self-Assembly and pH-Responsiveness of ABC Miktoarm Star Terpolymers. Langmuir, 2009, 25, 107-111.	3.5	43
74	Tocol modified glycol chitosan for the oral delivery of poorly soluble drugs. International Journal of Pharmaceutics, 2012, 423, 452-460.	5.2	43
7 5	Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-lon Battery Electrodes. ACS Applied Materials & Electrodes. ACS Applied Materials & Electrodes. ACS Applied Materials & Electrodes. 2017, 9, 34865-34874.	8.0	43
76	Carbonylâ€Based Ï€â€Conjugated Materials: From Synthesis to Applications in Lithiumâ€lon Batteries. ChemPlusChem, 2019, 84, 1179-1214.	2.8	43
77	Discovering new block terpolymer micellar morphologies. Chemical Communications, 2010, 46, 6455.	4.1	42
78	Tuning block copolymer micelles by metal–ligand interactions. Soft Matter, 2008, 4, 2278.	2.7	41
79	Structureâ^'Property Study of Diblock Copolymer Micelles:  Core and Corona Radius with Varying Composition and Degree of Polymerization. Macromolecules, 2005, 38, 10185-10191.	4.8	40
80	Study of the Influence of the Metalâ^'Ligand Complex on the Size of Aqueous Metallo-Supramolecular Micelles. Macromolecules, 2006, 39, 5484-5488.	4.8	40
81	Decoding the linear viscoelastic properties of model telechelic metallo-supramolecular polymers. Journal of Rheology, 2017, 61, 1245-1262.	2.6	39
82	Micellization of quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(methyl) Tj ETQq0 0 0 rgBT /0	Overlock 1 3.8	0 Tf 50 382 Td
83	Metallo-supramolecular hydrogels based on copolymers bearing terpyridine side-chain ligands. Soft Matter, 2013, 9, 2314.	2.7	38
84	Hydrogels with Dual Relaxation and Two-Step Gel–Sol Transition from Heterotelechelic Polymers. Macromolecules, 2013, 46, 9134-9143.	4.8	38
85	Functionalized Stimuli-Responsive Nanocages from Photocleavable Block Copolymers. Macromolecules, 2014, 47, 183-190.	4.8	38
86	Highly Regular Polyampholytic Structures Adsorbed Directly from Solution. Journal of Colloid and Interface Science, 2001, 242, 36-43.	9.4	37
87	Dynamic light scattering and cryogenic transmission electron microscopy investigations on metallo-supramolecular aqueous micelles: evidence of secondary aggregation. Colloid and Polymer Science, 2004, 282, 407-411.	2.1	37
88	Morphology of core-shell-corona aqueous micelles: II. Addition of core-forming homopolymer. Polymer, 2004, 45, 4375-4381.	3.8	37
89	Association behavior of thermo-responsive block copolymers based on poly(vinyl ethers). Polymer, 2005, 46, 9899-9907.	3.8	37
90	Amphiphilic gradient copolymers containing fluorinated 2â€phenylâ€2â€oxazolines: Microwaveâ€assisted oneâ€pot synthesis and selfâ€assembly in water. Journal of Polymer Science Part A, 2008, 46, 5859-5868.	2.3	37

#	Article	IF	Citations
91	Functionalized Nanoporous Thin Films From Photocleavable Block Copolymers. Macromolecular Rapid Communications, 2012, 33, 199-205.	3.9	37
92	Poreâ€Functionalized Nanoporous Materials Derived from Block Copolymers. Macromolecular Rapid Communications, 2013, 34, 962-982.	3.9	37
93	Multiresponsive Micellar Systems from Photocleavable Block Copolymers. ACS Macro Letters, 2012, 1, 949-953.	4.8	36
94	Self-Assembly in Thin Films of Mixtures of Block Copolymers and Homopolymers Interacting by Hydrogen Bonds. Macromolecules, 2010, 43, 7734-7743.	4.8	35
95	Photo-induced micellization of block copolymers bearing 4,5-dimethoxy-2-nitrobenzyl side groups. Soft Matter, 2011, 7, 6891.	2.7	35
96	Synthesis and Rheology of Bulk Metallo-Supramolecular Polymers from Telechelic Entangled Precursors. Macromolecules, 2017, 50, 5165-5175.	4.8	35
97	A High-Voltage Organic Framework for High-Performance Na- and K-lon Batteries. ACS Energy Letters, 2022, 7, 668-674.	17.4	34
98	Metallo-supramolecular micelles: Studies by analytical ultracentrifugation and electron microscopy. Journal of Polymer Science Part A, 2003, 41, 3159-3168.	2.3	33
99	Adsorption of block polyampholyte micelles in monolayers at the silicon water interface. Colloid and Polymer Science, 2000, 278, 502-508.	2.1	32
100	Metallo-supramolecular block copolymer micelles: Improved preparation and characterization. Journal of Polymer Science Part A, 2004, 42, 4458-4465.	2.3	32
101	Amine-functionalized nanoporous thin films from a poly(ethylene oxide)-block-polystyrene diblock copolymer bearing a photocleavable o-nitrobenzyl carbamate junction. Soft Matter, 2012, 8, 4486.	2.7	32
102	Self-assembly of chiral block and gradient copolymers. Soft Matter, 2012, 8, 165-172.	2.7	31
103	Controlling the melt rheology of linear entangled metallo-supramolecular polymers. Soft Matter, 2015, 11, 762-774.	2.7	31
104	Self-assembly of block copolymer complexes in organic solvents. Polymer, 2007, 48, 2306-2311.	3.8	30
105	Synthesis and Micellization of Coilâ^'Rodâ^'Coil Ruthenium(II) Terpyridine Assemblies. Macromolecules, 2008, 41, 8823-8831.	4.8	30
106	Multicompartment micelles from a metallo-supramolecular tetrablock quatercopolymer. Chemical Communications, 2009, , 6038.	4.1	30
107	Functionalized Nanoporous Thin Films from Metallo-Supramolecular Diblock Copolymers. Langmuir, 2012, 28, 3018-3023.	3.5	30
108	Electroactive polymer/carbon nanotube hybrid materials for energy storage synthesized via a "grafting to―approach. RSC Advances, 2017, 7, 17301-17310.	3.6	30

#	Article	IF	Citations
109	Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups. Journal of Materials Chemistry A, 2018, 6, 8514-8522.	10.3	30
110	Thermo-responsive properties of metallo-supramolecular block copolymer micellar hydrogels. Soft Matter, 2014, 10, 3086.	2.7	29
111	Selfâ€assembly of metalloâ€supramolecular block copolymers in thin films. Journal of Polymer Science Part A, 2008, 46, 4719-4724.	2.3	28
112	Advanced Polymer Architectures with Stimuli-Responsive Properties Starting from Inimers. Macromolecules, 2008, 41, 2593-2606.	4.8	28
113	Self-organization of rod–coil tri- and tetra-arm star metallo-supramolecular block copolymers in selective solvents. Soft Matter, 2009, 5, 2954.	2.7	28
114	Highly Ordered Conjugated Polymer Nanoarchitectures with Three-Dimensional Structural Control. Nano Letters, 2009, 9, 2838-2843.	9.1	28
115	Multicompartment micelles from blends of terpolymers. Polymer Chemistry, 2011, 2, 328-332.	3.9	28
116	A one-pot two-step efficient metal-free process for the generation of PEO-b-PCL-b-PLA amphiphilic triblock copolymers. RSC Advances, 2014, 4, 10028.	3.6	28
117	Synthesis of polymer precursors of electroactive materials by SET-LRP. Polymer Chemistry, 2015, 6, 6067-6072.	3.9	28
118	Imidazolium-substituted ionic (co)polythiophenes: Compositional influence on solution behavior and thermal properties. Polymer, 2013, 54, 6293-6304.	3.8	27
119	Three-dimensional interconnected Ni _{core} –NiO _{shell} nanowire networks for lithium microbattery architectures. Journal of Materials Chemistry A, 2016, 4, 1603-1607.	10.3	27
120	Fast Multiresponsive Micellar Gels from a Smart ABC Triblock Copolymer. Angewandte Chemie - International Edition, 2007, 46, 7988-7992.	13.8	26
121	Coreâ^'Shellâ^'Corona Micelles by PS- <i>b</i> -P2VP- <i>b</i> -PEO Copolymers:  Focus on the Water-Induced Micellization Process. Langmuir, 2008, 24, 3009-3015.	3.5	26
122	Controlling the Cross-Linking Density of Supramolecular Hydrogels Formed by Heterotelechelic Associating Copolymers. Macromolecules, 2014, 47, 4514-4524.	4.8	26
123	Nanostructured organic radical cathodes from self-assembled nitroxide-containing block copolymer thin films. Journal of Materials Chemistry A, 2015, 3, 19575-19581.	10.3	26
124	Core-shell nanostructured organic redox polymer cathodes with superior performance. Nano Energy, 2019, 64, 103949.	16.0	26
125	Schizophrenic thermoresponsive block copolymer micelles based on LCST and UCST behavior in ethanol–water mixtures. European Polymer Journal, 2015, 69, 460-471.	5.4	25
126	Selfâ€Assembly Behavior of Bis(terpyridine) and Metalloâ€bis(terpyridine) Pluronics in Dilute Aqueous Solutions. Macromolecular Chemistry and Physics, 2010, 211, 2323-2330.	2.2	24

#	Article	IF	Citations
127	Tuning the morphology of triblock terpoly(2-oxazoline)s containing a 2-phenyl-2-oxazoline block with varying fluorine content. Soft Matter, 2013, 9, 5966.	2.7	24
128	Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etching. Nano Letters, 2019, 19, 7681-7690.	9.1	24
129	Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s. Colloid and Polymer Science, 2006, 284, 1313-1318.	2.1	23
130	Closer insight into the structure of moderate to densely branched comb polymers by combining modelling and linear rheological measurements. Soft Matter, 2017, 13, 1063-1073.	2.7	23
131	Self-Organization of Water-Soluble Complexes of a Poly(2-vinylpyridinium)-block-poly(ethylene oxide) Diblock with Fluorinated Anionic Surfactants. Macromolecules, 2003, 36, 2579-2581.	4.8	22
132	Tuning micellar morphology and rheological behaviour of metallo-supramolecular micellar gels. Soft Matter, 2012, 8, 4499.	2.7	22
133	Temperatureâ€Responsive Aqueous Micelles From Terpyridine Endâ€Capped Poly(<i>N</i> â€Isopropylacrylamide)â€ <i>Block</i> â€Polystyrene Diblock Copolymers. Macromolecular Rapid Communications, 2012, 33, 534-539.	3.9	22
134	Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures. Polymer Chemistry, 2016, 7, 1088-1095.	3.9	22
135	High Salt-Content Plasticized Flame-Retardant Polymer Electrolytes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44844-44859.	8.0	22
136	Self-aggregation of poly(methyl methacrylate)-block-poly(sulfonated glycidyl methacrylate) copolymers. Polymer, 2001, 42, 8637-8645.	3.8	21
137	Diblock polyampholytes at the silicon-water interface: Adsorption as a function of block ratio and molecular weight. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 709-718.	2.1	21
138	Amphiphilic brushes from metallo-supramolecular block copolymers. Soft Matter, 2009, 5, 1460.	2.7	21
139	Amphiphilic N-methylimidazole-functionalized diblock copolythiophenes. European Polymer Journal, 2014, 53, 206-214.	5.4	21
140	Surface morphology and wetting properties of surfaces coated with an amphiphilic diblock copolymer. Surface Science, 2005, 575, 125-135.	1.9	20
141	Dependence of the structure of core–shell–corona micelles on the composition of water/toluene mixtures. Polymer, 2006, 47, 2723-2727.	3.8	20
142	Formation of Vesicles in Block Copolymer-Fluorinated Surfactant Complexes. Langmuir, 2007, 23, 116-122.	3.5	20
143	Upper critical solution temperature switchable micelles based on polystyreneâ€ <i>block</i> â€poly(methyl) Tj E	ТQq1 ₃ 1 0.7	784314 rgBT
144	Synthesis of an original fluorinated triethylene glycol methacrylate monomer and its radical copolymerisation with vinylidene fluoride. Its application as a gel polymer electrolyte for Li-ion batteries. Polymer Chemistry, 2015, 6, 6021-6028.	3.9	20

#	Article	IF	Citations
145	Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries. Scientific Reports, 2018, 8, 9794.	3.3	20
146	Elongation of Telechelic Ionomers under Shear: a Rheological and Rheo-optical Study. Macromolecules, 2000, 33, 1796-1800.	4.8	19
147	Association of Telechelic Ionomers in Apolar Solvents. Macromolecular Rapid Communications, 2001, 22, 1216.	3.9	19
148	Reorganization of Hydrogen-Bonded Block Copolymer Complexes. Langmuir, 2007, 23, 4618-4622.	3.5	19
149	Poly(dimethylsiloxane)â€Substituted 2,2′:6,2″â€Terpyridines: Synthesis and Characterization of New Amphiphilic Supramolecular Diblock Copolymers. Macromolecular Chemistry and Physics, 2008, 209, 1666-1672.	2.2	19
150	Revealing the Supramolecular Nature of Side-Chain Terpyridine-Functionalized Polymer Networks. International Journal of Molecular Sciences, 2015, 16, 990-1007.	4.1	19
151	Control over the assembly and rheology of supramolecular networks via multi-responsive double hydrophilic copolymers. Polymer Chemistry, 2017, 8, 1527-1539.	3.9	19
152	Adsorption and structure formation of the weak polyelectrolytic diblock copolymer, PVP- b -PDMAEMA. Colloid and Polymer Science, 2002, 280, 495-502.	2.1	18
153	Synthesis of diblock copolymers bearing p-methoxyphenacyl side groups. Polymer Chemistry, 2011, 2, 2284.	3.9	18
154	Orthogonal Control of the Dynamics of Supramolecular Gels from Heterotelechelic Associating Polymers. ACS Macro Letters, 2016, 5, 1364-1368.	4.8	18
155	Improving the Performance of Batteries by Using Multiâ€Pyrene PTMA Structures. Batteries and Supercaps, 2018, 1, 102-109.	4.7	18
156	Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals. Soft Matter, 2019, 15, 6418-6426.	2.7	18
157	Synthesis and characterization of metallo-supramolecular micelles. Polymer International, 2003, 52, 1611-1618.	3.1	17
158	Influence of substrate hydrophobicity on the adsorption of an amphiphilic diblock copolymer. Journal of Colloid and Interface Science, 2004, 271, 60-68.	9.4	17
159	Multiple micellar morphologies from tri―and tetrablock copoly(2â€oxazoline)s in binary water–ethanol mixtures. Journal of Polymer Science Part A, 2010, 48, 3095-3102.	2.3	17
160	Metallo-supramolecular block copolymer micelles: recent achievements. Soft Matter, 2011, 7, 3673.	2.7	17
161	Polyelectrolyte complex nanoparticles from chitosan and poly(acrylic acid) and Polystyreneâ€∢i>blockà€poly(acrylic acid). Journal of Polymer Science Part A, 2012, 50, 4484-4493.	2.3	17
162	Functionalized Nanoporous Thin Films From Blends of Block Copolymers and Homopolymers Interacting via Hydrogen Bonding. Macromolecular Chemistry and Physics, 2012, 213, 2075-2080.	2.2	17

#	Article	IF	CITATIONS
163	One-pot synthesis of electro-active polymer gels via Cu(0)-mediated radical polymerization and click chemistry. Polymer Chemistry, 2017, 8, 441-450.	3.9	17
164	Evaporation induced micellization of poly(2-oxazoline) multiblock copolymers on surfaces. Soft Matter, 2007, 3, 79-82.	2.7	16
165	Supramolecular Assemblies from Poly(styrene)-block-poly(4-vinylpyridine) Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid. Polymers, 2013, 5, 679-695.	4.5	16
166	Stimuli-responsive behavior of micelles prepared from a poly(vinyl alcohol)-block-poly(acrylic) Tj ETQq0 0 0 rgBT	Overlock 5.4	10 Tf 50 622 16
167	Hybrid LiMn2O4–radical polymer cathodes for pulse power delivery applications. Electrochimica Acta, 2017, 255, 442-448.	5. 2	16
168	Synthesis and characterization of non-covalent liquid crystalline diblock copolymers. Macromolecular Chemistry and Physics, 2000, 201, 31-41.	2.2	15
169	Preparation of gold nanoparticles under presence of the diblock polyampholyte PMAA-b-PDMAEMA. Journal of Polymer Research, 2010, 17, 579-588.	2.4	15
170	Nanoporous thin films from ionically connected diblock copolymers. European Polymer Journal, 2012, 48, 940-944.	5.4	15
171	Selfâ€assembly of a triblock terpolymer mediated by hydrogenâ€bonded complexes. Journal of Polymer Science Part A, 2015, 53, 459-467.	2.3	15
172	Precise Control over the Rheological Behavior of Associating Stimuli-Responsive Block Copolymer Gels. Gels, 2015, 1, 235-255.	4.5	14
173	Potential of polymethacrylate pseudo crown ethers as solid state polymer electrolytes. Chemical Communications, 2017, 53, 6899-6902.	4.1	14
174	Design of Flexible and Selfâ€Standing Electrodes for Liâ€Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 41-47.	4.9	14
175	Negative Redox Potential Shift in Fire-Retardant Electrolytes and Consequences for High-Energy Hybrid Batteries. ACS Applied Energy Materials, 2019, 2, 7879-7885.	5.1	14
176	Micellization of Poly(2â€oxazoline)â€Based Quasiâ€Diblock Copolymers on Surfaces. Macromolecular Chemistry and Physics, 2007, 208, 2026-2031.	2.2	13
177	Synthesis, characterization, and micellization studies of coilâ€rodâ€coil and ABA ruthenium(II) terpyridine assemblies with Ï€â€conjugated electron acceptor systems. Journal of Polymer Science Part A, 2011, 49, 1396-1408.	2.3	13
178	Transient Metallosupramolecular Networks Built from Entangled Melts of Poly(ethylene oxide). Macromolecules, 2015, 48, 3746-3755.	4.8	13
179	Supramolecular organization of model liquid crystalline ionomers. Macromolecular Chemistry and Physics, 1998, 199, 1791-1799.	2.2	12
180	lonic end-capping of (semi)telechelic polymers by mesogens: a novel route to liquid crystalline polymers. Progress in Polymer Science, 2001, 26, 1061-1099.	24.7	12

#	Article	IF	Citations
181	Synthesis and Application of New Photocrosslinkers for Poly(ethylene glycol). Australian Journal of Chemistry, 2012, 65, 193.	0.9	12
182	Ring opening metathesis polymerization of cyclopentene using a ruthenium catalyst confined by a branched polymer architecture. Polymer Chemistry, 2016, 7, 2923-2928.	3.9	12
183	On the improved electrochemistry of hybrid conducting-redox polymer electrodes. Scientific Reports, 2017, 7, 4847.	3.3	12
184	Polyelectrolyte complex nanoparticles from <i>N</i> à€earboxyethylchitosan and polycationic double hydrophilic diblock copolymers. Journal of Polymer Science Part A, 2009, 47, 2105-2117.	2.3	11
185	Synthesis and Selfâ€Assembly of Terpyridine Endâ€Capped Poly(<i>N</i> â€Isopropylacrylamide)â€ <i>block</i> â€Poly(2â€(Dimethylamino)ethyl Methacrylate) Diblock Copolymers. Macromolecular Rapid Communications, 2015, 36, 610-615.	3.9	11
186	Diblock copolymers consisting of a redox polymer block based on a stable radical linked to an electrically conducting polymer block as cathode materials for organic radical batteries. Polymer Chemistry, 2019, 10, 2570-2578.	3.9	11
187	Synthesis of novel polybutadiene-graft-poly(sodium methacrylate) amphiphilic copolymers as precursors for liquid crystalline graft copolymers. Macromolecular Chemistry and Physics, 1999, 200, 1630-1638.	2.2	10
188	Femtogramâ€Controlled Synthesis and Selfâ€Aligned Fabrication of Polyaniline Micro―and Nanostructures. Small, 2010, 6, 627-632.	10.0	10
189	Analogy in adsorption behavior of homopolyelectrolyte mixtures as compared to analogous diblock polyampholytes. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 338-345.	2.1	9
190	Structure of Metalloâ€Supramolecular Micellar Gels. Macromolecular Chemistry and Physics, 2013, 214, 1699-1709.	2.2	9
191	Synthesis of Vinylidene Fluoride-Based Copolymers Bearing Perfluorinated Ether Pendant Groups and Their Application in Gel Polymer Electrolytes. Macromolecules, 2019, 52, 3056-3065.	4.8	9
192	Solid Polymer Electrolytes Based on Copolymers of Cyclic Carbonate Acrylate and <i>n</i> å∈Butylacrylate. Macromolecular Chemistry and Physics, 2020, 221, 1900556.	2.2	8
193	Desorption Behaviour of Regular Adsorbed Polyampholytic Layers. Journal of Polymer Research, 2003, 10, 69-77.	2.4	7
194	Surface micellization of poly(2-oxazoline)s based copolymers containing a crystallizable block. Journal of Colloid and Interface Science, 2009, 332, 91-95.	9.4	7
195	Polymeric Janus nanoparticles templated by block copolymer thin films. RSC Advances, 2015, 5, 44218-44221.	3.6	7
196	Preparation of Janus nanoparticles from block copolymer thin films using triazolinedione chemistry. RSC Advances, 2017, 7, 37048-37054.	3.6	7
197	A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide. Polymer Chemistry, 2017, 8, 581-591.	3.9	7
198	Redox Polymer–Based Nanoâ€Objects via Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Chemistry and Physics, 2020, 221, 1900296.	2,2	7

#	Article	IF	Citations
199	Supramolecular Aqueous Gels Based on Terpyridineâ€Modified Pluronics. Macromolecular Chemistry and Physics, 2012, 213, 2253-2260.	2.2	6
200	Local Molecular Dynamics and Heterogeneity in PEO–NiCl2 Supramolecular Networks. Macromolecules, 2015, 48, 2290-2298.	4.8	6
201	Coreâ€Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as Highâ€Performance Cathode Material for Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901040.	3.8	6
202	Temperature and Redoxâ€Responsive Hydrogels Based on Nitroxide Radicals and Oligoethyleneglycol Methacrylate. Macromolecular Chemistry and Physics, 2020, 221, 1900550.	2.2	6
203	Small-Angle X-ray Scattering and Small-Angle Neutron Scattering Studies of Liquid-Crystalline Halato(semi)telechelic Polymers. Journal of Applied Crystallography, 1997, 30, 1075-1083.	4.5	5
204	Restriction of mobility in model liquid crystalline ionomers. Macromolecular Chemistry and Physics, 1998, 199, 2205-2210.	2.2	4
205	lonic end-capping of (semi)telechelic polymers by mesogens. Polymer International, 2000, 49, 1293-1301.	3.1	4
206	pH Dependence of the morphology of aqueous micelles formed by polystyrene-block-poly(2-vinylpyridine)-blockpoly(ethylene oxide) copolymers. E-Polymers, 2002, 2, .	3.0	4
207	Ab initio calculations of open cell voltage in newly designed PTMA-based Li-ion organic radical batteries. Computational Materials Science, 2018, 143, 27-31.	3.0	4
208	Application of Redox-Responsive Hydrogels Based on 2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate and Oligo(Ethyleneglycol) Methacrylate in Controlled Release and Catalysis. Polymers, 2021, 13, 1307.	4.5	4
209	Nâ€doped carbon nanotube sponges and their excellent lithium storage performances. Nano Select, 0, , .	3.7	4
210	Interfacial agents for polymer/liquid crystal dispersions. Macromolecular Chemistry and Physics, 1996, 197, 2209-2217.	2.2	3
211	Flexible fiber batteries for applications in smart textiles. Materials Research Society Symposia Proceedings, 2013, 1489, 7.	0.1	3
212	Micellar Structures from Anionically Synthesized Block Copolymers., 2015,, 925-972.		3
213	Ion-Conducting Redox-Active Polymer Gels Based on Stable Nitroxide Radicals. Polymers, 2019, 11, 1322.	4.5	3
214	Linear and Nonlinear Dynamic Behavior of Polymer Micellar Assemblies Connected by Metallo-Supramolecular Interactions. Polymers, 2019, 11, 1532.	4.5	3
215	Synthesis and characterization of hydrogels containing redoxâ€responsive 2,2,6,6 ― tetramethylpiperidinyloxy methacrylate and thermoresponsive N â€isopropylacrylamide. Journal of Polymer Science, 2020, 58, 1553-1563.	3.8	3
216	Assessing the Long-Term Reactivity to Achieve Compatible Electrolyte–Electrode Interfaces for Solid-State Rechargeable Lithium Batteries Using First-Principles Calculations. Journal of Physical Chemistry C, 2022, 126, 8227-8237.	3.1	3

#	Article	IF	CITATIONS
217	New Cathode Materials in the Feâ€PO ₄ â€F Chemical Space for Highâ€Performance Sodiumâ€lon Storage. Advanced Science, 2022, 9, .	11.2	3
218	Aggregation behaviour of monosulfonated telechelic ionomers. Polymer International, 2000, 49, 561-566.	3.1	2
219	pH-Dependence of the morphology of micelles formed by poly(2-vinylpyridine)-block-poly(ethylene) Tj ETQq1 1 0	.784314 3.0	rgBT /Overloc
220	Thermo-responsive metallo-supramolecular gels based on terpyridine end-functionalized amphiphilic diblock copolymers. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	0.1	1
221	High Power Cathodes from Poly(2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate)/Li(NixMnyCoz)O2 Hybrid Composites. Polymers, 2021, 13, 986.	4.5	1
222	Synthesis and characterization of non-covalent liquid crystalline diblock copolymers. Macromolecular Chemistry and Physics, 2000, 201, 31-41.	2.2	1
223	From Supramolecular Block Copolymers to Advanced Nano-Objects ChemInform, 2003, 34, no.	0.0	0