
Cesar G Fraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9177333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	( â^')-Epicatechin and cardiometabolic risk factors: a focus on potential mechanisms of action. Pflugers Archiv European Journal of Physiology, 2022, 474, 99-115.	1.3	8
2	Supplementation with cyanidin and delphinidin mitigates high fat diet-induced endotoxemia and associated liver inflammation in mice. Food and Function, 2022, 13, 781-794.	2.1	13
3	Curcumin Mitigates TNFαâ€Induced Cacoâ€2 Cell Monolayer Permeabilization Through Modulation of NFâ€ÎºB, ERK1/2, and JNK Pathways. Molecular Nutrition and Food Research, 2022, 66, e2101033.	1.5	6
4	A randomized placebo-controlled cross-over study on the effects of anthocyanins on inflammatory and metabolic responses to a high-fat meal in healthy subjects. Redox Biology, 2022, 51, 102273.	3.9	23
5	Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biology, 2021, 42, 101914.	3.9	21
6	(â^')-Epicatechin administration protects kidneys against modifications induced by short-terml-NAME treatment in rats. Food and Function, 2020, 11, 318-327.	2.1	12
7	Polyphenols and health. Food and Function, 2020, 11, 8405-8406.	2.1	0
8	(â^')-Epicatechin protects thoracic aortic perivascular adipose tissue from whitening in high-fat fed mice. Food and Function, 2020, 11, 5944-5954.	2.1	2
9	Ellagic acid protects Caco-2 cell monolayers against inflammation-induced permeabilization. Free Radical Biology and Medicine, 2020, 152, 776-786.	1.3	30
10	Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biology, 2019, 26, 101269.	3.9	94
11	Dietary (â^')-epicatechin affects NF-κB activation and NADPH oxidases in the kidney cortex of high-fructose-fed rats. Food and Function, 2019, 10, 26-32.	2.1	25
12	The effects of polyphenols and other bioactives on human health. Food and Function, 2019, 10, 514-528.	2.1	664
13	(–)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radical Biology and Medicine, 2019, 130, 478-488.	1.3	40
14	Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats. Archives of Biochemistry and Biophysics, 2018, 647, 47-53.	1.4	22
15	Plant bioactives and redox signaling: (–)-Epicatechin as a paradigm. Molecular Aspects of Medicine, 2018, 61, 31-40.	2.7	62
16	Research trends in flavonoids and health. Archives of Biochemistry and Biophysics, 2018, 646, 107-112.	1.4	184
17	Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biology, 2018, 18, 16-24.	3.9	93
18	Bioactives and their impact on human health. Molecular Aspects of Medicine, 2018, 61, 1.	2.7	2

#	Article	IF	CITATIONS
19	LPS-induced renal inflammation is prevented by (â^')â€epicatechin in rats. Redox Biology, 2017, 11, 342-349.	3.9	66
20	Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue. Journal of Nutritional Biochemistry, 2017, 46, 109-116.	1.9	9
21	Anthocyanins inhibit tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Food and Function, 2017, 8, 2915-2923.	2.1	60
22	Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (â~')-epicatechin. Food and Function, 2016, 7, 1876-1883.	2.1	24
23	Dietary (–)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radical Biology and Medicine, 2016, 90, 35-46.	1.3	74
24	(-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Archives of Biochemistry and Biophysics, 2016, 599, 13-21.	1.4	88
25	(â^')-Epicatechin reduces blood pressure increase in high-fructose-fed rats: effects on the determinants of nitric oxide bioavailability. Journal of Nutritional Biochemistry, 2015, 26, 745-751.	1.9	44
26	Interactions of flavan-3-ols and procyanidins with membranes: mechanisms and the physiological relevance. Food and Function, 2015, 6, 32-40.	2.1	55
27	(â~')-Epicatechin prevents alterations in the metabolism of superoxide anion and nitric oxide in the hearts of <scp>l</scp> -NAME-treated rats. Food and Function, 2015, 6, 154-160.	2.1	25
28	ln vitro measurements and interpretation of total antioxidant capacity. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 931-934.	1.1	124
29	Exploring the benefits and challenges of establishing a DRI-like process for bioactives. European Journal of Nutrition, 2014, 53 Suppl 1, 1-9.	1.8	43
30	(â~')-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radical Biology and Medicine, 2014, 72, 247-256.	1.3	110
31	(–)â€Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NOâ€mediated mechanism. IUBMB Life, 2013, 65, 710-715.	1.5	76
32	Blood pressure-lowering effect of dietary (â~')-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radical Biology and Medicine, 2012, 53, 1894-1902.	1.3	56
33	(â~')-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Archives of Biochemistry and Biophysics, 2012, 527, 113-118.	1.4	95
34	Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Free Radical Biology and Medicine, 2012, 52, 151-159.	1.3	62
35	Flavonoids and metabolic syndrome. Annals of the New York Academy of Sciences, 2012, 1259, 87-94.	1.8	108
36	Dietary flavonoids: Role of (â^')-epicatechin and related procyanidins in cell signaling. Free Radical Biology and Medicine, 2011, 51, 813-823.	1.3	212

#	Article	IF	CITATIONS
37	Cocoa flavanols: effects on vascular nitric oxide and blood pressure. Journal of Clinical Biochemistry and Nutrition, 2010, 48, 63-67.	0.6	75
38	Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine, 2010, 31, 435-445.	2.7	549
39	Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 2010, 501, 23-30.	1.4	190
40	Dimeric procyanidins are inhibitors of NF-κB–DNA binding. Biochemical Pharmacology, 2009, 78, 1252-1262.	2.0	65
41	Cardiac mitochondrial function and tissue remodelling are improved by a non-antihypertensive dose of enalapril in spontaneously hypertensive rats. Free Radical Research, 2009, 43, 390-399.	1.5	11
42	Cocoa, Chocolate, and Cardiovascular Disease. Journal of Cardiovascular Pharmacology, 2009, 54, 483-490.	0.8	91
43	Curcumin induces cellâ€arrest and apoptosis in association with the inhibition of constitutively active NFâ€₽B and STAT3 pathways in Hodgkin's lymphoma cells. International Journal of Cancer, 2008, 123, 56-65.	2.3	137
44	TNFα-induced NF-κB activation and cell oxidant production are modulated by hexameric procyanidins in Caco-2 cells. Archives of Biochemistry and Biophysics, 2008, 476, 186-195.	1.4	91
45	(-)-Epicatechin and related procyanidins modulate intracellular calcium and prevent oxidation in Jurkat T cells. Free Radical Research, 2008, 42, 864-872.	1.5	23
46	Relationship between oxidative stress, lipid peroxidation, and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion. Cardiovascular Research, 2007, 73, 710-719.	1.8	64
47	Plant polyphenols: How to translate their in vitro antioxidant actions to in vivo conditions. IUBMB Life, 2007, 59, 308-315.	1.5	170
48	Inhibition of Angiotensin Converting Enzyme Activity by Flavanol-Rich Foods. Journal of Agricultural and Food Chemistry, 2006, 54, 229-234.	2.4	264
49	Procyanidin structure defines theÂextent andÂspecificity ofÂangiotensin I converting enzyme inhibition. Biochimie, 2006, 88, 359-365.	1.3	87
50	Procyanidins protect Caco-2 cells from bile acid- and oxidant-induced damage. Free Radical Biology and Medicine, 2006, 41, 1247-1256.	1.3	80
51	Cocoa antioxidants and cardiovascular health. American Journal of Clinical Nutrition, 2005, 81, 298S-303S.	2.2	186
52	Cocoa, diabetes, and hypertension: should we eat more chocolate?. American Journal of Clinical Nutrition, 2005, 81, 541-542.	2.2	32
53	Regular Consumption of a Flavanol-rich Chocolate can Improve Oxidant Stress in Young Soccer Players. Clinical and Developmental Immunology, 2005, 12, 11-17.	3.3	154
54	Flavonoid-membrane Interactions: A Protective Role of Flavonoids at the Membrane Surface?. Clinical and Developmental Immunology, 2005, 12, 19-25.	3.3	298

#	Article	IF	CITATIONS
55	Antioxidant and Membrane Effects of Procyanidin Dimers and Trimers Isolated from Peanut and Cocoa. Journal of Agricultural and Food Chemistry, 2005, 53, 5041-5048.	2.4	97
56	Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005, 26, 235-244.	2.7	720
57	Membrane effects of Cocoa Procyanidins in Liposomes and Jurkat T Cells. Biological Research, 2004, 37, 293-300.	1.5	34
58	Epicatechin, catechin, and dimeric procyanidins inhibit PMAâ€induced NFâ€î®B activation at multiple steps in Jurkat T cells. FASEB Journal, 2004, 18, 167-169.	0.2	164
59	Ultrastructural evidence of increased tolerance of hibernating myocardium to cardioplegic ischemia-reperfusion injury. Journal of the American College of Cardiology, 2004, 43, 2329-2336.	1.2	15
60	The regular supplementation with an antioxidant mixture decreases oxidative stress in healthy humans. Gender effect. Clinica Chimica Acta, 2004, 349, 97-103.	0.5	28
61	Concerted action of the renin–angiotensin system, mitochondria, and antioxidant defenses in aging. Molecular Aspects of Medicine, 2004, 25, 27-36.	2.7	48
62	Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radical Biology and Medicine, 2003, 34, 84-92.	1.3	172
63	Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS Letters, 2003, 555, 597-600.	1.3	203
64	Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB Journal, 2003, 17, 1096-1098.	0.2	167
65	Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. American Journal of Clinical Nutrition, 2002, 76, 798-804.	2.2	492
66	Influence of flavan-3-ols and procyanidins on UVC-mediated formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in isolated DNA. Archives of Biochemistry and Biophysics, 2002, 406, 203-208.	1.4	28
67	Iron toxicity and antioxidant nutrients. Toxicology, 2002, 180, 23-32.	2.0	221
68	Comparative Study on the Antioxidant Capacity of Wines and Other Plantâ€Derived Beverages. Annals of the New York Academy of Sciences, 2002, 957, 279-283.	1.8	28
69	Polyphenols and Red Wine as Peroxynitrite Scavengers. Annals of the New York Academy of Sciences, 2002, 957, 271-273.	1.8	12
70	Assessing the Antioxidant Capacity in the Hydrophilic and Lipophilic Domains. Annals of the New York Academy of Sciences, 2002, 957, 284-287.	1.8	5
71	More Antioxidants in Cocoa. Journal of Nutrition, 2001, 131, 835.	1.3	2
72	Epicatechin in Human Plasma: In Vivo Determination and Effect of Chocolate Consumption on Plasma Oxidation Status. Journal of Nutrition, 2000, 130, 2109S-2114S.	1.3	293

#	Article	IF	CITATIONS
73	A Dose-Response Effect from Chocolate Consumption on Plasma Epicatechin and Oxidative Damage. Journal of Nutrition, 2000, 130, 2115S-2119S.	1.3	246
74	Enalapril and captopril enhance glutathione-dependent antioxidant defenses in mouse tissues. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R572-R577.	0.9	117
75	Influence of Oligomer Chain Length on the Antioxidant Activity of Procyanidins. Biochemical and Biophysical Research Communications, 2000, 276, 945-951.	1.0	188
76	Content of liver and brain ubiquinol-9 and ubiquinol-10 after chronic ethanol intake in rats subjected to two levels of dietaryα-tocopherol. Free Radical Research, 2000, 33, 313-319.	1.5	6
77	Catechins Delay Lipid Oxidation and αâ€Tocopherol and βâ€Carotene Depletion Following Ascorbate Depletion in Human Plasma. Proceedings of the Society for Experimental Biology and Medicine, 2000, 225, 32-38.	2.0	7
78	Ascorbate protects (+)-catechin from oxidation both in a pure chemical system and human plasma. Biological Research, 2000, 33, 151-7.	1.5	17
79	Oxidative stress in testes of rats subjected to chronic iron intoxication and $\hat{l}\pm$ -tocopherol supplementation. Toxicology, 1999, 132, 179-186.	2.0	51
80	Tissue damage in acute myocardial infarction: selective protection by vitamin E. Free Radical Biology and Medicine, 1999, 26, 1587-1590.	1.3	11
81	Higher levels of antioxidant defenses in enalapril-treated versus non–enalapril-treated hemodialysis patients. American Journal of Kidney Diseases, 1999, 34, 445-455.	2.1	62
82	Dose-Dependent Increase of Oxidative Damage in the Testes of Rats Subjected to Acute Iron Overload. Archives of Biochemistry and Biophysics, 1999, 372, 37-43.	1.4	70
83	(+)-Catechin Prevents Human Plasma Oxidation. Free Radical Biology and Medicine, 1998, 24, 435-441.	1.3	156
84	Evaluation of antioxidants, protein, and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neurochemical Research, 1997, 22, 535-539.	1.6	80
85	Superoxide dismutase and glutathione peroxidase activities are increased by enalapril and captopril in mouse liver. FEBS Letters, 1995, 361, 22-24.	1.3	78
86	5-Aminolevulinic acid mediates the in vivo and in vitro formation of 8-hydroxy-2'-deoxyguanosine in DNA. Carcinogenesis, 1994, 15, 2241-2244.	1.3	56
87	Lability of red blood cell membranes to lipid peroxidation: Application to humans fed polyunsaturated lipids. Lipids, 1990, 25, 111-114.	0.7	20
88	Effects of aluminum on brain lipid peroxidation. Toxicology Letters, 1990, 51, 213-219.	0.4	106
89	Application of stimulation modeling to lipid peroxidation processes. Free Radical Biology and Medicine, 1989, 7, 361-368.	1.3	27
90	Damage to protein synthesis concurrent with lipid peroxidation in rat liver slices: Effect of halogenated compounds, peroxides, and vitamin E. Archives of Biochemistry and Biophysics, 1989, 270, 84-91.	1.4	43

#	Article	IF	CITATIONS
91	Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radical Biology and Medicine, 1988, 4, 155-161.	1.3	618
92	Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochemical Pharmacology, 1987, 36, 717-720.	2.0	216
93	Halogenated compounds as inducers of lipid peroxidation in tissue slices. Free Radical Biology and Medicine, 1987, 3, 119-123.	1.3	104
94	Increased liver chemiluminescence in tumor-bearing mice. Journal of Free Radicals in Biology & Medicine, 1985, 1, 131-138.	2.1	42
95	Chemiluminescence of the in situ rat liver after acute ethanol intoxication—effect of (+)-cyanidanol-3. Biochemical Pharmacology, 1983, 32, 2822-2825.	2.0	45
96	Increased chemiluminescence and superoxide production in the liver of chronically ethanol-treated rats. Archives of Biochemistry and Biophysics, 1983, 227, 534-541.	1.4	204