

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9177151/publications.pdf Version: 2024-02-01

VIN LIN

#	Article	IF	CITATIONS
1	Hydrothermal conversion of fructose to lactic acid and derivatives: Synergies of metal and acid/base catalysts. Chinese Journal of Chemical Engineering, 2023, 53, 381-401.	3.5	4
2	Synthesis of PtCu–based nanocatalysts: Fundamentals and emerging challenges in energy conversion. Journal of Energy Chemistry, 2022, 64, 583-606.	12.9	29
3	Hydrogenolysis of Glycerol to 1,3â€Propanediol: Are Spatial and Electronic Configuration of "Metalâ€Solid Acid―Interface Key for Active and Durable Catalysts?. ChemCatChem, 2022, 14, .	3.7	15
4	Synergistic advanced oxidation process for enhanced degradation of organic pollutants in spent sulfuric acid over recoverable apricot shell-derived biochar catalyst. RSC Advances, 2022, 12, 1904-1913.	3.6	6
5	Recent Advances on Synthesis of CoCO ₃ with Controlled Morphologies. Chemical Record, 2022, 22, e202200021.	5.8	2
6	Opportunities and Emerging Challenges of the Heterogeneous Metal-Based Catalysts for Vegetable Oil Epoxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 7426-7446.	6.7	10
7	Strong metal-support interaction of palladium carbide in PtPd/C catalysts for enhanced catalytic transfer hydrogenolysis of glycerol. Biomass and Bioenergy, 2022, 163, 106507.	5.7	6
8	Different Agglomeration Processes Induced by the Varied Interaction of Fe–Fe Analogues with Differently Charged Surfactants. Langmuir, 2022, 38, 8469-8476.	3.5	3
9	Insight into the basic strength-dependent catalytic performance in aqueous phase oxidation of glyceric acid. Chemical Engineering Science, 2021, 230, 116191.	3.8	18
10	Electronic coupling enhanced PtCo/CeO2 hybrids as highly active catalysts for the key dehydrogenation step in conversion of bio-derived polyols. Chemical Engineering Science, 2021, 229, 116060.	3.8	8
11	Catalytic Deoxygenation of Xylitol to Renewable Chemicals: Advances on Catalyst Design and Mechanistic Studies. Chemical Record, 2021, 21, 133-148.	5.8	12
12	Engineering Pt-Mn2O3 interface to boost selective oxidation of ethylene glycol to glycolic acid. Applied Catalysis B: Environmental, 2021, 284, 119803.	20.2	40
13	Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coordination Chemistry Reviews, 2021, 429, 213649.	18.8	6
14	Interfacial catalysts for sustainable chemistry: advances on atom and energy efficient glycerol conversion to acrylic acid. Green Chemistry, 2021, 23, 51-76.	9.0	17
15	<scp>Auâ€Promoted</scp> Pt nanoparticles supported on <scp>MgO</scp> / <scp>SBA</scp> â€15 as an efficient catalyst for selective oxidation of glycerol. AICHE Journal, 2021, 67, e17196.	3.6	9
16	Mesoporogen-Free Strategy to Construct Hierarchical TS-1 in a Highly Concentrated System for Gas-Phase Propene Epoxidation with H ₂ and O ₂ . ACS Applied Materials & Interfaces, 2021, 13, 26134-26142.	8.0	22
17	Tailoring Facets of α-Mn ₂ O ₃ Microcrystalline Catalysts for Enhanced Selective Oxidation of Glycerol to Glycolic Acid. ACS Catalysis, 2021, 11, 6371-6383.	11.2	64
18	Catalytic Transfer Hydrogenolysis of Glycerol over Heterogeneous Catalysts: A Short Review on Mechanistic Studies. Chemical Record, 2021, 21, 1792-1810.	5.8	20

Xin Jin

#	Article	IF	CITATIONS
19	Dealuminization for a Modified (Si–OH) <i>_n</i> –Pt Interface: Self-Activation of Pt/NaY Catalysts for Oxidation of Ethylene Glycol in a Base-Free Medium. ACS Sustainable Chemistry and Engineering, 2021, 9, 14416-14429.	6.7	5
20	Hydrogenolysis of Glycerol to Propylene Glycol: Energy, Tech-Economic, and Environmental Studies. Frontiers in Chemistry, 2021, 9, 778579.	3.6	14
21	Recent Advances in Facile Liquid Phase Epoxidation of Light Olefins over Heterogeneous Molybdenum Catalysts. Chemical Record, 2020, 20, 230-251.	5.8	5
22	Ni–Co oxide catalysts with lattice distortions for enhanced oxidation of glycerol to glyceric acid. Journal of Catalysis, 2020, 381, 248-260.	6.2	48
23	Insight into the Effect of Lewis Acid of W/Al-MCM-41 Catalyst on Metathesis of 1-Butene and Ethylene. Applied Catalysis A: General, 2020, 604, 117772.	4.3	11
24	Non-noble metal catalysts for transfer hydrogenation of levulinic acid: The role of surface morphology and acid-base pairs. Materials Today Energy, 2020, 18, 100501.	4.7	13
25	Recent Advances in Catalyst Development for Transesterification of Dialkyl Carbonates with Phenol. Industrial & Engineering Chemistry Research, 2020, 59, 20630-20645.	3.7	3
26	Recent Advances on Purification of Lactic Acid. Chemical Record, 2020, 20, 1236-1256.	5.8	18
27	Fe ³⁺ -Mediated Pt/Y Zeolite Catalysts Display Enhanced Metal–Bronsted Acid Interaction and Synergistic Cascade Hydrogenolysis Reactions. Industrial & Engineering Chemistry Research, 2020, 59, 17387-17398.	3.7	9
28	Synergistic Bimetallic Pd–Pt/TiO ₂ Catalysts for Hydrogenolysis of Xylitol with <i>In Situ</i> -Formed H ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 13879-13891.	3.7	9
29	A Review on Biomass Gasification: Effect of Main Parameters on Char Generation and Reaction. Energy & Fuels, 2020, 34, 13438-13455.	5.1	47
30	Bimetallic AuPt/TiO ₂ Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O ₂ . ACS Catalysis, 2020, 10, 10932-10945.	11.2	37
31	Chemical Synthesis of Adipic Acid from Glucose and Derivatives: Challenges for Nanocatalyst Design. ACS Sustainable Chemistry and Engineering, 2020, 8, 18732-18754.	6.7	8
32	Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2. Green Energy and Environment, 2020, 5, 473-483.	8.7	30
33	PtRu/Zn ₃ Ce ₁ O _x catalysts with Lewis acid–base pairs show synergistic performances for the conversion of glycerol in the absence of externally added H ₂ . Catalysis Science and Technology, 2020, 10, 4386-4395.	4.1	7
34	Structural sensitivity of heterogeneous catalysts for sustainable chemical synthesis of gluconic acid from glucose. Chinese Journal of Catalysis, 2020, 41, 1320-1336.	14.0	26
35	Catalytic Transfer Hydrogenolysis of Bio-Polyols to Renewable Chemicals over Bimetallic PtPd/C Catalysts: Size-Dependent Activity and Selectivity. ACS Sustainable Chemistry and Engineering, 2020, 8, 5305-5316.	6.7	13
36	Electronically Coupled PtCo/MgAl Hydrotalcite Catalysts Display Tunable Selectivity Toward Glyceric Acid and Lactic Acid for Glycerol Conversion. Catalysis Letters, 2020, 150, 2590-2598.	2.6	9

Xin Jin

#	Article	IF	CITATIONS
37	Lattice distorted MnCo oxide materials as efficient catalysts for transfer hydrogenation of levulinic acid as H-donor. Chemical Engineering Science, 2020, 222, 115721.	3.8	16
38	Minireview on Bio-Oil Upgrading via Electrocatalytic Hydrogenation: Connecting Biofuel Production with Renewable Power. Energy & amp; Fuels, 2020, 34, 7915-7928.	5.1	55
39	Recent Progress in Adipic Acid Synthesis Over Heterogeneous Catalysts. Frontiers in Chemistry, 2020, 8, 185.	3.6	20
40	Synergistic effects of bimetallic PtRu/MCM-41 nanocatalysts for glycerol oxidation in base-free medium: Structure and electronic coupling dependent activity. Applied Catalysis B: Environmental, 2019, 259, 118070.	20.2	53
41	Enhanced performance of bimetallic PtCo/MCM-41 catalysts for glycerol oxidation in base-free medium. Catalysis Science and Technology, 2019, 9, 4909-4919.	4.1	27
42	Toward Selective Dehydrogenation of Glycerol to Lactic Acid over Bimetallic Pt–Co/CeO _{<i>x</i>} Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 14548-14558.	3.7	25
43	Influence of Lewis Acid on the Activity and Selectivity of Pt/MCM-41 (Al) Catalysts for Oxidation of C ₃ Polyols in Base-Free Medium. Industrial & Engineering Chemistry Research, 2019, 58, 20259-20269.	3.7	9
44	Selective oxidation of glycerol to carboxylic acids on Pt(111) in base-free medium: A periodic density functional theory investigation. Applied Surface Science, 2019, 497, 143661.	6.1	31
45	Synergistic Pt/MgO/SBA-15 nanocatalysts for glycerol oxidation in base-free medium: Catalyst design and mechanistic study. Journal of Catalysis, 2019, 370, 434-446.	6.2	56
46	Selective Oxidation of 1,2-Propanediol to Lactic Acid Over Synergistic AuCu/TiO2 Catalysts. Catalysis Letters, 2019, 149, 1037-1045.	2.6	10
47	Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. Chemical Record, 2019, 19, 1952-1994.	5.8	10
48	Catalytic epoxidation of olefins in liquid phase over manganese based magnetic nanoparticles. Dalton Transactions, 2019, 48, 16827-16843.	3.3	13
49	Catalytic Transfer Hydrogenation of Biomassâ€Derived Substrates to Valueâ€Added Chemicals on Dualâ€Function Catalysts: Opportunities and Challenges. ChemSusChem, 2019, 12, 71-92.	6.8	109
50	Liquid-Phase Epoxidation of Light Olefins over W and Nb Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 4423-4452.	6.7	36
51	Selective propylene epoxidation in liquid phase using highly dispersed Nb catalysts incorporated in mesoporous silicates. Chinese Journal of Chemical Engineering, 2018, 26, 1278-1284.	3.5	7
52	Catalytic H2 auto transfer amination of polyols to alkyl amines in one pot using supported Ru catalysts. Catalysis Today, 2018, 302, 227-232.	4.4	8
53	Manipulating Gold Spatial Location on Titanium Silicalite-1 To Enhance the Catalytic Performance for Direct Propene Epoxidation with H ₂ and O ₂ . ACS Catalysis, 2018, 8, 10649-10657.	11.2	44
54	Structurally Strained Bimetallic PtFe Nanocatalysts Show Tunable Catalytic Selectivity in Aqueous Oxidation of Bio-Polyols to Dicarboxylic Acids. Industrial & Engineering Chemistry Research, 2018, 57, 12078-12086.	3.7	9

Xin Jin

#	Article	IF	CITATIONS
55	Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A: General, 2017, 534, 46-57.	4.3	24
56	Intriguing Catalyst (CaO) Pretreatment Effects and Mechanistic Insights during Propylene Carbonate Transesterification with Methanol. ACS Sustainable Chemistry and Engineering, 2017, 5, 4718-4729.	6.7	31
57	Phase Transformed PtFe Nanocomposites Show Enhanced Catalytic Performances in Oxidation of Glycerol to Tartronic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 13157-13164.	3.7	24
58	Kinetic modeling of Pt/C catalyzed aqueous phase glycerol conversion with <i>in situ</i> formed hydrogen. AICHE Journal, 2016, 62, 1162-1173.	3.6	23
59	Anisotropic growth of PtFe nanoclusters induced by lattice-mismatch: Efficient catalysts for oxidation of biopolyols to carboxylic acid derivatives. Journal of Catalysis, 2016, 337, 272-283.	6.2	43
60	Kinetic Modeling of Sorbitol Hydrogenolysis over Bimetallic RuRe/C Catalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 6037-6047.	6.7	24
61	Oxidation of Glycerol to Dicarboxylic Acids Using Cobalt Catalysts. ACS Catalysis, 2016, 6, 4576-4583.	11.2	68
62	Synergistic Effects of Bimetallic PtPd/TiO ₂ Nanocatalysts in Oxidation of Glucose to Glucaric Acid: Structure Dependent Activity and Selectivity. Industrial & Engineering Chemistry Research, 2016, 55, 2932-2945.	3.7	73
63	Synergistic Strain Engineering Effect of Hybrid Plasmonic, Catalytic, and Magnetic Core–Shell Nanocrystals. Nano Letters, 2015, 15, 8347-8353.	9.1	21
64	Sorbitol Hydrogenolysis over Hybrid Cu/CaO-Al ₂ O ₃ Catalysts: Tunable Activity and Selectivity with Solid Base Incorporation. ACS Catalysis, 2015, 5, 6545-6558.	11.2	76
65	Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. Journal of Catalysis, 2015, 330, 323-329.	6.2	88
66	Graphene oxide stabilized Cu2O for shape selective nanocatalysis. Journal of Materials Chemistry A, 2014, 2, 7147.	10.3	28
67	Lattice-Matched Bimetallic CuPd-Graphene Nanocatalysts for Facile Conversion of Biomass-Derived Polyols to Chemicals. ACS Nano, 2013, 7, 1309-1316.	14.6	112
68	Activity and Selectivity of Base Promoted Mono and Bimetallic Catalysts for Hydrogenolysis of Xylitol and Sorbitol. ACS Symposium Series, 2013, , 273-285.	0.5	6
69	Multiphase Catalytic Hydrogenolysis/Hydrodeoxygenation Processes for Chemicals from Renewable Feedstocks: Kinetics, Mechanism, and Reaction Engineering. Industrial & Engineering Chemistry Research, 2013, 52, 15226-15243.	3.7	35
70	Atom Economical Aqueous-Phase Conversion (APC) of Biopolyols to Lactic Acid, Glycols, and Linear Alcohols Using Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2013, 1, 1453-1462.	6.7	59