
Arni Kristjansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9177098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of priming in conjunctive visual search. Cognition, 2002, 85, 37-52.	1.1	167
2	Priming in visual search: Separating the effects of target repetition, distractor repetition and role-reversal. Vision Research, 2008, 48, 1217-1232.	0.7	149
3	An internationally standardised antisaccade protocol. Vision Research, 2013, 84, 1-5.	0.7	138
4	Efficient visual search without top-down or bottom-up guidance. Perception & Psychophysics, 2005, 67, 239-253.	2.3	128
5	Neural Basis for Priming of Pop-Out during Visual Search Revealed with fMRI. Cerebral Cortex, 2007, 17, 1612-1624.	1.6	123
6	Is goal-directed attentional guidance just intertrial priming? A review. Journal of Vision, 2013, 13, 14-14.	0.1	91
7	Rapid learning in attention shifts: A review. Visual Cognition, 2006, 13, 324-362.	0.9	88
8	Simultaneous priming along multiple feature dimensions in a visual search task. Vision Research, 2006, 46, 2554-2570.	0.7	86
9	Priming of Color and Position during Visual Search in Unilateral Spatial Neglect. Journal of Cognitive Neuroscience, 2005, 17, 859-873.	1.1	85
10	The attentional blink in space and time. Vision Research, 2002, 42, 2039-2050.	0.7	79
11	Common Attentional Constraints in Visual Foraging. PLoS ONE, 2014, 9, e100752.	1.1	73
12	Designing sensory-substitution devices: Principles, pitfalls and potential1. Restorative Neurology and Neuroscience, 2016, 34, 769-787.	0.4	69
13	Rapid, Object-Based Learning in the Deployment of Transient Attention. Perception, 2001, 30, 1375-1387.	0.5	67
14	A primitive memory system for the deployment of transient attention. Perception & Psychophysics, 2003, 65, 711-724.	2.3	67
15	On-Line Attentional Selection From Competing Stimuli in Opposite Visual Fields: Effects on Human Visual Cortex and Control Processes. Journal of Neurophysiology, 2006, 96, 2601-2612.	0.9	67
16	Less attention is more in the preparation of antisaccades, but not prosaccades. Nature Neuroscience, 2001, 4, 1037-1042.	7.1	66
17	Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 2016, 153, 196-210.	1.1	64
18	Repetition streaks increase perceptual sensitivity in visual search of brief displays. Visual Cognition, 2008, 16, 643-658.	0.9	63

#	Article	IF	CITATIONS
19	Attentional priming: recent insights and current controversies. Current Opinion in Psychology, 2019, 29, 71-75.	2.5	58
20	Priming of pop-out on multiple time scales during visual search. Vision Research, 2011, 51, 1972-1978.	0.7	57
21	Impaired recognition of faces and objects in dyslexia: Evidence for ventral stream dysfunction?. Neuropsychology, 2015, 29, 739-750.	1.0	57
22	Saccade landing point selection and the competition account of pro- and antisaccade generation: The involvement of visual attention ? A review. Scandinavian Journal of Psychology, 2007, 48, 97-113.	0.8	56
23	The case for causal influences of action videogame play upon vision and attention. Attention, Perception, and Psychophysics, 2013, 75, 667-672.	0.7	55
24	Representing Color Ensembles. Psychological Science, 2017, 28, 1510-1517.	1.8	55
25	When pros become cons for anti- versus prosaccades: factors with opposite or common effects on different saccade types. Experimental Brain Research, 2004, 155, 231-244.	0.7	54
26	Deciding where to attend: Priming of pop-out drives target selection Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1700-1707.	0.7	54
27	Prism adaptation improves visual search in hemispatial neglect. Neuropsychologia, 2009, 47, 717-725.	0.7	53
28	Problems with visual statistical learning in developmental dyslexia. Scientific Reports, 2017, 7, 606.	1.6	50
29	Designing Rehabilitation Programs for Neglect: Could 2 Be More Than 1+1?. Applied Neuropsychology, 2011, 18, 95-106.	1.5	49
30	Episodic retrieval and feature facilitation in intertrial priming of visual search. Attention, Perception, and Psychophysics, 2011, 73, 1350-1360.	0.7	46
31	Repetition of distractor sets improves visual search performance in hemispatial neglect. Neuropsychologia, 2008, 46, 1161-1169.	0.7	44
32	Strength in numbers: Combining neck vibration and prism adaptation produces additive therapeutic effects in unilateral neglect. Neuropsychological Rehabilitation, 2010, 20, 704-724.	1.0	44
33	On the joys of perceiving: Affect as feedback for perceptual predictions. Acta Psychologica, 2016, 169, 1-10.	0.7	44
34	Can a single short-term mechanism account for priming of pop-out?. Vision Research, 2015, 115, 17-22.	0.7	43
35	Reconsidering Visual Search. I-Perception, 2015, 6, 204166951561467.	0.8	41
36	"I know what you did on the last trial" - a selective review of research on priming in visual search. Frontiers in Bioscience - Landmark, 2008, 13, 1171.	3.0	40

#	Article	IF	CITATIONS
37	Object- and feature-based priming in visual search. Psychonomic Bulletin and Review, 2008, 15, 378-384.	1.4	39
38	The boundary conditions of priming of visual search: From passive viewing through task-relevant working memory load. Psychonomic Bulletin and Review, 2013, 20, 514-521.	1.4	38
39	Visual Foraging With Fingers and Eye Gaze. I-Perception, 2016, 7, 204166951663727.	0.8	38
40	How feature integration theory integrated cognitive psychology, neurophysiology, and psychophysics. Attention, Perception, and Psychophysics, 2020, 82, 7-23.	0.7	36
41	Curvature discontinuities are cues for rapid shape analysis. Perception & Psychophysics, 2001, 63, 390-403.	2.3	35
42	Independent priming of location and color in identification of briefly presented letters. Attention, Perception, and Psychophysics, 2014, 76, 40-48.	0.7	33
43	Rapid learning of visual ensembles. Journal of Vision, 2017, 17, 21.	0.1	30
44	Foraging through multiple target categories reveals the flexibility of visual working memory. Acta Psychologica, 2018, 183, 108-115.	0.7	30
45	Relative vibrotactile spatial acuity of the torso. Experimental Brain Research, 2017, 235, 3505-3515.	0.7	29
46	Specific problems in visual cognition of dyslexic readers: Face discrimination deficits predict dyslexia over and above discrimination of scrambled faces and novel objects. Cognition, 2018, 175, 157-168.	1.1	29
47	Measuring relative vibrotactile spatial acuity: effects of tactor type, anchor points and tactile anisotropy. Experimental Brain Research, 2018, 236, 3405-3416.	0.7	29
48	Serial dependence in a simulated clinical visual search task. Scientific Reports, 2019, 9, 19937.	1.6	29
49	Time limits during visual foraging reveal flexible working memory templates Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 827-835.	0.7	28
50	Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired. Optometry and Vision Science, 2018, 95, 757-765.	0.6	27
51	The influence of object-relative visuomotor set on express saccades. Journal of Vision, 2007, 7, 12.	0.1	26
52	On the Benefits of Transient Attention across the Visual Field. Perception, 2008, 37, 747-764.	0.5	26
53	Are Foraging Patterns in Humans Related to Working Memory and Inhibitory Control?. Japanese Psychological Research, 2017, 59, 152-166.	0.4	26
54	Repetition priming in selective attention: A TVA analysis. Acta Psychologica, 2015, 160, 35-42.	0.7	25

#	Article	IF	CITATIONS
55	Dynamics of visual attention revealed in foraging tasks. Cognition, 2020, 194, 104032.	1.1	24
56	The Sound of Vision Project: On the Feasibility of an Audio-Haptic Representation of the Environment, for the Visually Impaired. Brain Sciences, 2016, 6, 20.	1.1	23
57	Optimizing perception: Attended and ignored stimuli create opposing perceptual biases. Attention, Perception, and Psychophysics, 2021, 83, 1230-1239.	0.7	22
58	Saccade performance in the nasal and temporal hemifields. Experimental Brain Research, 2012, 219, 107-120.	0.7	21
59	Barking up the wrong tree in attentional bias modification? Comparing the sensitivity of four tasks to attentional biases. Journal of Behavior Therapy and Experimental Psychiatry, 2015, 48, 9-16.	0.6	21
60	Dissociating implicit and explicit ensemble representations reveals the limits of visual perception and the richness of behavior. Scientific Reports, 2021, 11, 3899.	1.6	21
61	Keeping it real: Looking beyond capacity limits in visual cognition. Attention, Perception, and Psychophysics, 2021, 83, 1375-1390.	0.7	21
62	Increased sensitivity to speed changes during adaptation to first-order, but not to second-order motion. Vision Research, 2001, 41, 1825-1832.	0.7	19
63	P300 in neglect. Clinical Neurophysiology, 2012, 123, 496-506.	0.7	19
64	Set size manipulations reveal the boundary conditions of perceptual ensemble learning. Vision Research, 2017, 140, 144-156.	0.7	19
65	Asymmetries of the visual system and their influence on visual performance and oculomotor dynamics. European Journal of Neuroscience, 2018, 48, 3426-3445.	1.2	19
66	Visual foraging and executive functions: A developmental perspective. Acta Psychologica, 2019, 193, 203-213.	0.7	19
67	Independent and additive repetition priming of motion direction and color in visual search. Psychological Research, 2009, 73, 158-166.	1.0	18
68	Disruption of spatial memory in visual search in the left visual field in patients with hemispatial neglect. Vision Research, 2010, 50, 1426-1435.	0.7	18
69	Neural Correlates of Inter-Trial Priming and Role-Reversal in Visual Search. Frontiers in Human Neuroscience, 2011, 5, 151.	1.0	18
70	Learning features in a complex and changing environment: A distribution-based framework for visual attention and vision in general. Progress in Brain Research, 2017, 236, 97-120.	0.9	18
71	Representing color and orientation ensembles: Can observers learn multiple feature distributions?. Journal of Vision, 2019, 19, 2.	0.1	18
72	Expectations and perceptual priming in a visual search task: Evidence from eye movements and behavior Journal of Experimental Psychology: Human Perception and Performance, 2019, 45, 489-499.	0.7	18

#	Article	IF	CITATIONS
73	How priming in visual search affects response time distributions: Analyses with ex-Gaussian fits. Attention, Perception, and Psychophysics, 2014, 76, 2199-2211.	0.7	17
74	Money talks in attention bias modification: Reward in a dot-probe task affects attentional biases. Visual Cognition, 2015, 23, 118-132.	0.9	17
75	Probabilistic rejection templates in visual working memory. Cognition, 2020, 196, 104075.	1.1	17
76	You see what you look for: Targets and distractors in visual search can cause opposing serial dependencies. Journal of Vision, 2021, 21, 3.	0.1	17
77	The Icelandic version of the dimensional obsessive compulsive scale (DOCS) and its relationship with obsessive beliefs. Journal of Obsessive-Compulsive and Related Disorders, 2013, 2, 149-156.	0.7	16
78	History effects in visual search for monsters: Search times, choice biases, and liking. Attention, Perception, and Psychophysics, 2015, 77, 402-412.	0.7	16
79	Own-race and other-race face recognition problems without visual expertise problems in dyslexic readers. Vision Research, 2019, 158, 146-156.	0.7	16
80	Surface Assignment Modulates Object Formation for Visual Short-Term Memory. Perception, 2006, 35, 865-881.	0.5	15
81	Understanding visual attention in childhood: Insights from a new visual foraging task. Cognitive Research: Principles and Implications, 2016, 1, 18.	1.1	15
82	The intriguing interactive relationship between visual attention and saccadic eye movements. , 2011, , .		15
83	Blaming the victims of your own mistakes: How visual search accuracy influences evaluation of stimuli. Cognition and Emotion, 2015, 29, 1091-1106.	1.2	14
84	How visual working memory contents influence priming of visual attention. Psychological Research, 2018, 82, 833-839.	1.0	14
85	A serious game to explore human foraging in a 3D environment. PLoS ONE, 2019, 14, e0219827.	1.1	14
86	Feature Distribution Learning (FDL): A New Method for Studying Visual Ensembles Perception with Priming of Attention Shifts. Neuromethods, 2019, , 37-57.	0.2	14
87	Violating the main sequence: asymmetries in saccadic peak velocities for saccades into the temporal versus nasal hemifields. Experimental Brain Research, 2013, 227, 101-110.	0.7	13
88	The influence of selection modality, display dynamics and error feedback on patterns of human foraging. Visual Cognition, 2019, 27, 626-648.	0.9	13
89	Encoding perceptual ensembles during visual search in peripheral vision. Journal of Vision, 2020, 20, 20.	0.1	13
90	Moving foraging into three dimensions: Feature- versus conjunction-based foraging in virtual reality. Quarterly Journal of Experimental Psychology, 2022, 75, 313-327.	0.6	13

#	Article	IF	CITATIONS
91	Learning in shifts of transient attention improves recognition of parts of ambiguous figure-ground displays. Journal of Vision, 2009, 9, 21-21.	0.1	12
92	Dynamics of attentional and oculomotor orienting in visual foraging tasks. Quarterly Journal of Experimental Psychology, 2022, 75, 260-276.	0.6	12
93	"Hot―facilitation of "cool―processing: Emotional distraction can enhance priming of visual search Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 298-306.	0.7	11
94	Visual Foraging Tasks Provide New Insights intoÂtheÂOrienting of Visual Attention: Methodological Considerations. Neuromethods, 2019, , 3-21.	0.2	11
95	Temporal Characteristics of Priming of Attention Shifts Are Mirrored by BOLD Response Patterns in the Frontoparietal Attention Network. Cerebral Cortex, 2020, 30, 2267-2280.	1.6	11
96	Foraging with Anne Treisman: Features versus conjunctions, patch leaving and memory for foraged locations. Attention, Perception, and Psychophysics, 2020, 82, 818-831.	0.7	11
97	Temporal Consistency Is Currency in Shifts of Transient Visual Attention. PLoS ONE, 2010, 5, e13660.	1.1	10
98	Attentional priming releases crowding. Attention, Perception, and Psychophysics, 2013, 75, 1323-1329.	0.7	10
99	The intensity order illusion: temporal order of different vibrotactile intensity causes systematic localization errors. Journal of Neurophysiology, 2019, 122, 1810-1820.	0.9	10
100	Age differences in foraging and executive functions: A cross-sectional study. Journal of Experimental Child Psychology, 2020, 198, 104910.	0.7	10
101	Random reward priming is task-contingent: the robustness of the 1-trial reward priming effect. Frontiers in Psychology, 2014, 5, 309.	1.1	9
102	Replacing intrusive thoughts: Investigating thought control in relation to OCD symptoms. Journal of Behavior Therapy and Experimental Psychiatry, 2014, 45, 506-515.	0.6	9
103	Implicit processing during change blindness revealed with mouse-contingent and gaze-contingent displays. Attention, Perception, and Psychophysics, 2018, 80, 844-859.	0.7	9
104	Priming in visual search: A spanner in the works for Theeuwes's bottom-up attention sweeps?. Acta Psychologica, 2010, 135, 114-116.	0.7	8
105	Effects of saccade training on express saccade proportions, saccade latencies, and peak velocities: an investigation of nasal/temporal differences. Experimental Brain Research, 2018, 236, 1251-1262.	0.7	8
106	Testing temporal integration of feature probability distributions using role-reversal effects in visual search. Vision Research, 2021, 188, 211-226.	0.7	8
107	What kind of empirical evidence is needed for probabilistic mental representations? An example from visual perception. Cognition, 2021, 217, 104903.	1.1	8
108	Featural and configural processing of faces and houses in matched dyslexic and typical readers. Neuropsychologia, 2021, 162, 108059.	0.7	8

#	Article	IF	CITATIONS
109	Foraging tempo: Human run patterns in multiple-target search are constrained by the rate of successive responses. Quarterly Journal of Experimental Psychology, 2022, 75, 297-312.	0.6	7
110	The Slopes Remain the Same: Reply to Wolfe (2016). I-Perception, 2016, 7, 204166951667338.	0.8	6
111	Attentional priming does not enable observers to ignore salient distractors. Visual Cognition, 2019, 27, 595-608.	0.9	6
112	Priming of Visual Search Facilitates Attention Shifts: Evidence From Object-Substitution Masking. Perception, 2016, 45, 255-264.	0.5	5
113	The development of foraging organization. Attention, Perception, and Psychophysics, 2021, 83, 2891-2904.	0.7	5
114	Vibrotactile Threshold Measurements at the Wrist Using Parallel Vibration Actuators. ACM Transactions on Applied Perception, 2022, 19, 1-11.	1.2	5
115	Temporal integration of feature probability distributions. Psychological Research, 2022, 86, 2030-2044.	1.0	4
116	Effects of stimulus order on auditory distance discrimination of virtual nearby sound sources. Journal of the Acoustical Society of America, 2017, 141, EL375-EL380.	0.5	3
117	Disgust and Contamination Concerns: the Mediating Role of Harm Avoidance and Incompleteness. International Journal of Cognitive Therapy, 2020, 13, 251-270.	1.3	3
118	The selection balance: Contrasting value, proximity and priming in a multitarget foraging task. Cognition, 2022, 218, 104935.	1.1	3
119	Eating disorder symptoms and foraging for food related items. Journal of Eating Disorders, 2021, 9, 18.	1.3	2
120	The Predation Game: Does dividing attention affect patterns of human foraging?. Cognitive Research: Principles and Implications, 2021, 6, 35.	1.1	2
121	Temporal integration of feature probability distributions in visual working memory. Journal of Vision, 2021, 21, 1969.	0.1	2
122	The role of executive functions in foraging throughout development. Journal of Vision, 2019, 19, 234b.	0.1	2
123	Bayesian approximations to the theory of visual attention (TVA) in a foraging task. Quarterly Journal of Experimental Psychology, 2023, 76, 497-510.	0.6	2
124	Advances in the application of a computational Theory of Visual Attention (TVA): Moving towards more naturalistic stimuli and game-like tasks. Open Psychology, 2022, 4, 27-46.	0.2	2
125	Adding another dimension to history effects in vision: Larger serial dependence in the depth plane than in the fronto-parallel plane in virtual reality. Journal of Vision, 2021, 21, 2505.	0.1	1
126	Feature distribution learning by passive exposure. Journal of Vision, 2021, 21, 2559.	0.1	1

#	Article	IF	CITATIONS
127	The moment-by-moment attentional temperature: How do history effects influence attentional capture?. Visual Cognition, 0, , 1-4.	0.9	1
128	The role of attention and feature-space proximity in perceptual biases from serial dependence. Journal of Vision, 2021, 21, 2543.	0.1	1
129	Probabilistic perceptual landscapes. Journal of Vision, 2018, 18, 529.	0.1	1
130	Measuring Biases of Visual Attention: A Comparison of Four Tasks. Behavioral Sciences (Basel,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 62
131	Serial dependence determines object classification in visual search. Journal of Vision, 2017, 17, 221.	0.1	1
132	Introducing a New Haptic Illusion to Increase the Perceived Resolution of Tactile Displays. , 2018, , .		1
133	The influence of stimulus uncertainty on attractive and repulsive perceptual biases. Journal of Vision, 2020, 20, 142.	0.1	1
134	Dynamic coding of temporal luminance variation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 1180.	0.8	0
135	Musical expertise, musical style, and visual attention. Psychology of Music, 0, , 030573562098888.	0.9	0
136	The inseparability of visual processes in developmental dyslexia and the inseparability of visual categories in developmental prosopagnosia. Journal of Vision, 2021, 21, 2658.	0.1	0
137	Serial dependence from distractor stimuli at irrelevant locations. Journal of Vision, 2021, 21, 2591.	0.1	0
138	Contrasting attentional biases in a saccadic choice task. Experimental Brain Research, 2021, , 1.	0.7	0
139	Developmental dyslexia and potential deficits of experience-driven visual processing. Journal of Vision, 2017, 17, 627.	0.1	0
140	Visual foraging with two simultaneous visual working memory templates. Journal of Vision, 2017, 17, 1126.	0.1	0
141	Binding feature distributions to locations and to other features. Journal of Vision, 2017, 17, 78.	0.1	0
142	Visual search slopes are not caused by increased distractor numbers: Insights from visual foraging. Journal of Vision, 2018, 18, 638.	0.1	0
143	Representing color and orientation ensembles: Perceptual learning of multiple feature distributions. Journal of Vision, 2018, 18, 263.	0.1	0
144	Variance modulates temporal weighting during integration of sequentially presented visual ensembles. Journal of Vision, 2019, 19, 193.	0.1	0

#	ARTICLE	IF	CITATIONS
145	No Advantage for Separating Overt and Covert Attention in Visual Search. Vision (Switzerland), 2020, 4, 28.	0.5	0