
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9176970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TBAF-Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles under Solventless Conditions. Journal of Organic Chemistry, 2004, 69, 2896-2898.	1.7	258
2	Flow approaches towards sustainability. Green Chemistry, 2014, 16, 3680-3704.	4.6	213
3	Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy and Environmental Science, 2012, 5, 8457.	15.6	197
4	Semiconducting Polymers Prepared by Direct Arylation Polycondensation. Angewandte Chemie - International Edition, 2012, 51, 3520-3523.	7.2	197
5	Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy and Environmental Science, 2019, 12, 2646-2664.	15.6	193
6	Heterogeneous catalytic approaches in C–H activation reactions. Green Chemistry, 2016, 18, 3471-3493.	4.6	192
7	Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chemistry, 2017, 19, 1601-1612.	4.6	169
8	Recent Advances in Lewis Acid Catalyzed Dielsâ ``Alder Reactions in Aqueous Media. European Journal of Organic Chemistry, 2001, 2001, 439-455.	1.2	146
9	Synthesis of 4-Aryl-1H-1,2,3-triazoles through TBAF-Catalyzed [3 + 2] Cycloaddition of 2-Aryl-1-nitroethenes with TMSN3under Solvent-Free Conditions. Journal of Organic Chemistry, 2005, 70, 6526-6529.	1.7	126
10	\hat{I}^3 -Valerolactone as an alternative biomass-derived medium for the Sonogashira reaction. Green Chemistry, 2015, 17, 1071-1076.	4.6	124
11	A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner Heck coupling reactions. Green Chemistry, 2015, 17, 365-372.	4.6	120
12	Ring Opening of Epoxides with Sodium Azide in Water. A Regioselective pH-Controlled Reaction. Journal of Organic Chemistry, 1999, 64, 6094-6096.	1.7	113
13	Current methodologies for a sustainable approach to π-conjugated organic semiconductors. Energy and Environmental Science, 2016, 9, 763-786.	15.6	112
14	Î ³ -Valerolactone as a Renewable Dipolar Aprotic Solvent Deriving from Biomass Degradation for the Hiyama Reaction. ACS Sustainable Chemistry and Engineering, 2014, 2, 2461-2464.	3.2	111
15	Ringâ€Opening of Epoxides in Water. European Journal of Organic Chemistry, 2011, 2011, 2587-2598.	1.2	109
16	Click-chemistry approaches to π-conjugated polymers for organic electronics applications. Chemical Science, 2016, 7, 6298-6308.	3.7	104
17	Replacement strategies for non-green dipolar aprotic solvents. Green Chemistry, 2020, 22, 6240-6257.	4.6	102
18	C–H arylations of 1,2,3-triazoles by reusable heterogeneous palladium catalysts in biomass-derived γ-valerolactone. Chemical Communications. 2016. 52. 9777-9780.	2.2	101

#	Article	IF	CITATIONS
19	Zn(II)-Catalyzed Thiolysis of Oxiranes in Water under Neutral Conditions. Journal of Organic Chemistry, 2003, 68, 8248-8251.	1.7	97
20	C–H functionalization reactions under flow conditions. Chemical Society Reviews, 2019, 48, 2767-2782.	18.7	94
21	Palladium Supported on Crossâ€Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions. Advanced Synthesis and Catalysis, 2013, 355, 2007-2018.	2.1	91
22	Heterogeneous palladium-catalysed Catellani reaction in biomass-derived γ-valerolactone. Green Chemistry, 2016, 18, 5025-5030.	4.6	90
23	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90
24	Heterogeneous C–H alkenylations in continuous-flow: oxidative palladium-catalysis in a biomass-derived reaction medium. Green Chemistry, 2017, 19, 2510-2514.	4.6	89
25	Indium Salt-Promoted Organic Reactions. Current Organic Chemistry, 2003, 7, 1661-1689.	0.9	82
26	Sc(III)-Catalyzed Enantioselective Addition of Thiols to α,β-Unsaturated Ketones in Neutral Water. Organic Letters, 2011, 13, 2150-2152.	2.4	76
27	Bifunctional Ruthenium(II) PCP Pincer Complexes and Their Catalytic Activity in Acceptorless Dehydrogenative Reactions. Organometallics, 2013, 32, 3069-3073.	1.1	76
28	Lewis-Acid Catalyzed Organic Reactions in Water. The Case of AlCl3, TiCl4, and SnCl4Believed To Be Unusable in Aqueous Mediumâ€. Journal of Organic Chemistry, 2001, 66, 4719-4722.	1.7	74
29	Thiolysis of 1,2-epoxides by thiophenol catalyzed under solvent-free conditions. Tetrahedron Letters, 2003, 44, 6785-6787.	0.7	72
30	NaOH-Catalyzed Thiolysis of α,β-Epoxyketones in Water. A Key Step in the Synthesis of Target Molecules Starting from α,β-Unsaturated Ketones. Journal of Organic Chemistry, 2004, 69, 2315-2321.	1.7	70
31	Recent developments on the chemistry of aliphatic nitro compounds under aqueous medium. Green Chemistry, 2007, 9, 823.	4.6	70
32	Excited-State Proton Transfer in Indigo. Journal of Physical Chemistry B, 2017, 121, 2308-2318.	1.2	70
33	Efficient O-Trimethylsilylation of Alcohols and Phenols with Trimethylsilyl Azide Catalyzed by Tetrabutylammonium Bromide under Neat Conditions. Journal of Organic Chemistry, 2001, 66, 6734-6737.	1.7	66
34	3-Nitrocoumarins as Dienophiles in the Dielsâ^'Alder Reaction in Water. An Approach to the Synthesis of Nitrotetrahydrobenzo[c]chromenones and Dihydrodibenzo[b,d]furans. Journal of Organic Chemistry, 2003, 68, 9263-9268.	1.7	65
35	First One-Pot Copper-Catalyzed Synthesis of α-Hydroxy-β-Amino Acids in Water. A New Protocol for Preparation of Optically Active Norstatines. Journal of Organic Chemistry, 2003, 68, 7041-7045.	1.7	63
36	Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Progress in Energy and Combustion Science, 2018, 65, 136-162.	15.8	63

#	Article	IF	CITATIONS
37	A continuous flow approach for the C–H functionalization of 1,2,3-triazoles in γ-valerolactone as a biomass-derived medium. Green Chemistry, 2018, 20, 2888-2893.	4.6	63
38	Cobalt(II) Chloride-Catalyzed Chemoselective Sodium Borohydride Reduction of Azides in Water. Synthesis, 2000, 2000, 646-650.	1.2	62
39	[AlCl3 + 2THF]:  A New and Efficient Catalytic System for Dielsâ^'Alder Cycloaddition of α,β-Unsaturated Carbonyl Compounds under Solvent-Free Conditions. Organic Letters, 2006, 8, 2487-2489.	2.4	62
40	Ruthenium(<scp>ii</scp>) oxidase catalysis for C–H alkenylations in biomass-derived γ-valerolactone. Green Chemistry, 2018, 20, 398-402.	4.6	62
41	Epoxidation of α,β-unsaturated ketones in water. An environmentally benign protocol. Green Chemistry, 2003, 5, 425-428.	4.6	61
42	Supported l-proline on zirconium phosphates methyl and/or phenyl phosphonates as heterogeneous organocatalysts for direct asymmetric aldol addition. Journal of Catalysis, 2011, 282, 112-119.	3.1	60
43	InCl3-Catalyzed Regio- and Stereoselective Thiolysis of α,β-Epoxycarboxylic Acids in Water. Organic Letters, 2005, 7, 4411-4414.	2.4	59
44	An E-factor minimized protocol for the preparation of methyl β-hydroxy esters. Green Chemistry, 2010, 12, 1301.	4.6	58
45	Thiolysis of Alkyl- and Aryl-1,2-epoxides in Water Catalyzed by InCl3. Advanced Synthesis and Catalysis, 2002, 344, 379-384.	2.1	57
46	A green route to \hat{l}^2 -amino alcohols via the uncatalyzed aminolysis of 1,2-epoxides by alkyl- and arylamines. Green Chemistry, 2006, 8, 960-964.	4.6	57
47	One-Pot Synthesis of Benzo[e]1,4-oxathiepin-5-ones under Solvent-Free Condition via Self-Promoted Thiolysis of 1,2-Epoxides. Journal of Organic Chemistry, 2004, 69, 8780-8785.	1.7	56
48	Domino Hydrogenation–Reductive Amination of Phenols, a Simple Process To Access Substituted Cyclohexylamines. Organic Letters, 2015, 17, 3990-3993.	2.4	56
49	Sustainable flow approaches to active pharmaceutical ingredients. Green Chemistry, 2020, 22, 5937-5955.	4.6	56
50	Azidolysis of α,β-Epoxycarboxylic Acids. A Water-Promoted Process Efficiently Catalyzed by Indium Trichloride at pH 4.0. Journal of Organic Chemistry, 2001, 66, 3554-3558.	1.7	55
51	Polystyryl-supported TBD as an efficient and reusable catalyst under solvent-free conditions. Chemical Communications, 2004, , 2756.	2.2	54
52	Dielsâ~'Alder Reactions of 3-Substituted Coumarins in Water and under High-Pressure Condition. An Uncatalyzed Route to Tetrahydro-6H-benzo[c]chromen-6-ones. Journal of Organic Chemistry, 2006, 71, 70-74.	1.7	54
53	Efficient <i>E</i> elective Transfer Semihydrogenation of Alkynes by Means of Ligandâ€Metal Cooperating Ruthenium Catalyst. Advanced Synthesis and Catalysis, 2015, 357, 2351-2357.	2.1	54
54	Water, a clean, inexpensive, and re-usable reaction medium. One-pot synthesis of (E)-2-aryl-1-cyano-1-nitroethenes. Green Chemistry, 2001, 3, 229-232.	4.6	53

#	Article	IF	CITATIONS
55	AlCl 3 as an efficient Lewis acid catalyst in water. Tetrahedron Letters, 2001, 42, 1131-1133.	0.7	53
56	An E-Factor Minimized Protocol for a Sustainable and Efficient Heck Reaction in Flow. ACS Sustainable Chemistry and Engineering, 2014, 2, 2813-2819.	3.2	53
57	A tailored polymeric cationic tag–anionic Pd(<scp>ii</scp>) complex as a catalyst for the low-leaching Heck–Mizoroki coupling in flow and in biomass-derived GVL. Green Chemistry, 2019, 21, 355-360.	4.6	52
58	Amberlite IRA900N3 as a New Catalyst for the Azidation of α,β-Unsaturated Ketones under Solvent-Free Conditions. Journal of Organic Chemistry, 2006, 71, 9536-9539.	1.7	51
59	2â€ <i>tert</i> â€Butyliminoâ€2â€diethylaminoâ€1,3â€dimethylperhydroâ€1,3,2†diazaphosphorine Supported Polystyrene (PSâ€BEMP) as an Efficient Recoverable and Reusable Catalyst for the Phenolysis of Epoxides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2010, 352, 2489-2496.	on 2.1	50
60	E-factor minimized protocols for the polystyryl-BEMP catalyzed conjugate additions of various nucleophiles to $\hat{1}\pm,\hat{1}^2$ -unsaturated carbonyl compounds. Green Chemistry, 2012, 14, 164-169.	4.6	50
61	Polystyrylâ€BEMP as an Efficient Recyclable Catalyst for the Nucleophilic Addition of Nitroalkanes to α,βâ€Unsaturated Carbonyl Compounds under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2008, 350, 1218-1224.	2.1	46
62	Efficient synthesis of cyanohydrin trimethylsilyl ethers via 1,2-chemoselective cyanosilylation of carbonyls. Green Chemistry, 2013, 15, 199-204.	4.6	46
63	Bromolysis and Iodolysis of α,β-Epoxycarboxylic Acids in Water Catalyzed by Indium Halides. Journal of Organic Chemistry, 2001, 66, 4463-4467.	1.7	45
64	Solvent-Free Al(OTf)3-Catalyzed Aminolysis of 1,2-Epoxides by 2-Picolylamine:Â A Key Step in the Synthesis of Ionic Liquids. Journal of Organic Chemistry, 2004, 69, 7745-7747.	1.7	44
65	Easy and environmentally friendly uncatalyzed synthesis of \hat{l}^2 -hydroxy arylsulfides by thiolysis of 1,2-epoxides in water. Green Chemistry, 2003, 5, 436-440.	4.6	43
66	Small Molecular Aryl Acetylenes: Chemically Tailoring Highâ€Efficiency Organic Semiconductors for Solar Cells and Fieldâ€Effect Transistors. ChemPlusChem, 2014, 79, 486-507.	1.3	43
67	Accessing stable zirconium carboxy-aminophosphonate nanosheets as support for highly active Pd nanoparticles. Chemical Communications, 2015, 51, 15990-15993.	2.2	42
68	Sustainable Approach to Waste-Minimized Sonogashira Cross-Coupling Reaction Based on Recoverable/Reusable Heterogeneous Catalytic/Base System and Acetonitrile Azeotrope. ACS Sustainable Chemistry and Engineering, 2016, 4, 7209-7216.	3.2	42
69	Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bioâ€Based Reaction Media. Chemistry - A European Journal, 2018, 24, 13383-13390.	1.7	42
70	Immobilized palladium nanoparticles on potassium zirconium phosphate as an efficient recoverable heterogeneous catalyst for a clean Heck reaction in flow. Journal of Molecular Catalysis A, 2015, 401, 27-34.	4.8	41
71	Efficient Catalytic Upgrading of Levulinic Acid into Alkyl Levulinates by Resin-Supported Acids and Flow Reactors. Catalysts, 2017, 7, 235.	1.6	41
72	Extensive Screening of Green Solvents for Safe and Sustainable UiO-66 Synthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 17154-17164.	3.2	41

#	Article	IF	CITATIONS
73	Waste minimized synthesis of pharmaceutically active compounds <i>via</i> heterogeneous manganese catalysed C–H oxidation in flow. Green Chemistry, 2020, 22, 397-403.	4.6	40
74	Amberlite IRA900F as a Solid Fluoride Source for a Variety of Organic Transformations under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2008, 2008, 3928-3932.	1.2	39
75	A Sulfoneâ€Containing Imidazoliumâ€Based BrÃ,nsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate. Advanced Synthesis and Catalysis, 2019, 361, 3342-3350.	2.1	39
76	Polymer-Supported Bis-1,2,4-triazolium Ionic Tag Framework for an Efficient Pd(0) Catalytic System in Biomass Derived γ-Valerolactone. ACS Sustainable Chemistry and Engineering, 2019, 7, 6939-6946.	3.2	39
77	Evidences of release and catch mechanism in the Heck reaction catalyzed by palladium immobilized on highly cross-linked-supported imidazolium salts. Journal of Molecular Catalysis A, 2014, 387, 57-62.	4.8	38
78	Continuous flow/waste-minimized synthesis of benzoxazoles catalysed by heterogeneous manganese systems. Green Chemistry, 2019, 21, 5298-5305.	4.6	38
79	Green solvent-processed organic electronic devices. Journal of Materials Chemistry C, 2020, 8, 15027-15047.	2.7	38
80	Green solvents for organic thin-film transistor processing. Journal of Materials Chemistry C, 2020, 8, 5786-5794.	2.7	38
81	Quantitative Sustainability Assessment of Flow Chemistry–From Simple Metrics to Holistic Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 9508-9540.	3.2	38
82	Uncatalyzed and Solvent-Free Multicomponent Process for the Synthesis of Biphenyl-2-carbonitrile Derivatives. Organic Letters, 2006, 8, 5741-5744.	2.4	37
83	Preparation and Use of Polystyrylâ€DABCOF ₂ : An Efficient Recoverable and Reusable Catalyst for βâ€Azidation of α,βâ€Unsaturated Ketones in Water. Advanced Synthesis and Catalysis, 2012, 354, 908-916.	2.1	37
84	A waste-minimized protocol for copper-catalyzed Ullmann-type reaction in a biomass derived furfuryl alcohol/water azeotrope. Green Chemistry, 2018, 20, 1634-1639.	4.6	37
85	Waste-minimised copper-catalysed azide–alkyne cycloaddition in Polarclean as a reusable and safe reaction medium. Green Chemistry, 2018, 20, 183-187.	4.6	37
86	Polystyrene-Supported 1,5,7-Triazabicyclo[4.4.0]dec-5-ene as an Efficient and Reusable Catalyst for the Thiolysis of 1,2-Epoxides under Solvent-Free Conditions. European Journal of Organic Chemistry, 2006, 2006, 1231-1236.	1.2	36
87	Searching for novel reusable biomass-derived solvents: furfuryl alcohol/water azeotrope as a medium for waste-minimised copper-catalysed azide–alkyne cycloaddition. Green Chemistry, 2016, 18, 6380-6386.	4.6	36
88	Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green Chemistry, 2019, 21, 614-626.	4.6	36
89	New zirconium hydrogen phosphate alkyl and/or aryl phosphonates with high surface area as heterogeneous BrÃ,nsted acid catalysts for aza-Diels–Alder reaction in aqueous medium. Journal of Catalysis, 2011, 277, 80-87.	3.1	35
90	Organic Small Molecules for Photonics and Electronics from the [2.2]Paracyclophane Scaffold. Israel Journal of Chemistry, 2012, 52, 41-52.	1.0	35

#	Article	IF	CITATIONS
91	TBAF-catalyzed [3 + 2]cycloaddition of TMSN3 to 3-nitrocoumarins under SFC: an effective green route to chromeno[3,4-d][1,2,3]triazol-4(3H)-ones. Green Chemistry, 2005, 7, 874.	4.6	34
92	A Protocol for Accessing the β-Azidation of α,β-Unsaturated Carboxylic Acids. Organic Letters, 2012, 14, 4610-4613.	2.4	33
93	Rasta resin as support for TBD in base-catalyzed organic processes. Journal of Catalysis, 2012, 285, 216-222.	3.1	33
94	SELECTED METHODS FOR THE REDUCTION OF THE AZIDO GROUP. Organic Preparations and Procedures International, 2002, 34, 109-147.	0.6	32
95	A New Oneâ€Pot Synthesis of Polysubstituted Indoles from Pyrroles and βâ€Nitroacrylates. Advanced Synthesis and Catalysis, 2011, 353, 1425-1428.	2.1	32
96	Diastereoselective Threeâ€Step Route to <i>o</i> â€(6â€Nitrocyclohexâ€3â€enâ€1â€yl)phenol and Tetrahydroâ€6 <i>H</i> â€benzo[<i>c</i>]chromenâ€6â€ol Derivatives from Salicylaldehydes. European Journal of Organic Chemistry, 2011, 2011, 2874-2884.	1.2	32
97	Crossâ€Linked Thiazolidine Network as Support for Palladium: A New Catalyst for Suzuki and Heck Reactions. ChemCatChem, 2015, 7, 2526-2533.	1.8	32
98	Synthesis and characterization of novel polystyrene-supported TBD catalysts and their use in the Michael addition for the synthesis of Warfarin and its analogues. Journal of Catalysis, 2014, 309, 260-267.	3.1	31
99	Novel cross-linked polystyrenes with large space network as tailor-made catalyst supports for sustainable media. European Polymer Journal, 2015, 73, 391-401.	2.6	31
100	Aquivion PFSA as a Novel Solid and Reusable Acid Catalyst in the Synthesis of 2-Pyrrolidin-2-ones in Flow. ACS Sustainable Chemistry and Engineering, 2015, 3, 1873-1880.	3.2	31
101	Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki–Miyaura and Heck Coupling. Catalysts, 2017, 7, 186.	1.6	31
102	Non-Covalent Supported of l-Proline on Graphene Oxide/Fe3O4 Nanocomposite: A Novel, Highly Efficient and Superparamagnetically Separable Catalyst for the Synthesis of Bis-Pyrazole Derivatives. Molecules, 2018, 23, 330.	1.7	31
103	Synthesis of Zirconium Phosphonate Supported <scp>L</scp> â€Proline as an Effective Organocatalyst for Direct Asymmetric Aldol Addition. European Journal of Organic Chemistry, 2014, 2014, 1716-1726.	1.2	30
104	Definition of green synthetic tools based on safer reaction media, heterogeneous catalysis, and flow technology. Pure and Applied Chemistry, 2018, 90, 21-33.	0.9	30
105	A catalytic approach to the base-promoted reaction of epoxides with activated methylenes. Tetrahedron Letters, 2010, 51, 1566-1569.	0.7	29
106	Continuousâ€Flow Palladium atalyzed Synthesis of Cyclohexanones from Phenols using Sodium Formate as a Safe Hydrogen Source. ChemCatChem, 2018, 10, 1277-1281.	1.8	29
107	C2–H Arylation of Indoles Catalyzed by Palladiumâ€Containing Metalâ€Organicâ€Framework in γâ€Valerolactone. ChemSusChem, 2020, 13, 2786-2791.	3.6	29
108	Avoiding hot-spots in Microwave-assisted Pd/C catalysed reactions by using the biomass derived solvent I ³ -Valerolactone. Scientific Reports, 2018, 8, 10571.	1.6	28

#	Article	IF	CITATIONS
109	A heterogeneous and recoverable palladium catalyst to access the regioselective C–H alkenylation of quinoline <i>N</i> -oxides. Green Chemistry, 2020, 22, 6560-6566.	4.6	28
110	A waste-minimized protocol for the preparation of 1,2-azido alcohols and 1,2-amino alcohols. Green Chemistry, 2013, 15, 2394.	4.6	27
111	Synthesis of polymeric semiconductors by a surface-initiated approach. RSC Advances, 2013, 3, 23909.	1.7	26
112	Polymerâ€Anchored Bifunctional Pincer Catalysts for Chemoselective Transfer Hydrogenation and Related Reactions. ChemSusChem, 2019, 12, 4693-4699.	3.6	26
113	Liquid Organic Hydrogen Carriers (LOHCs) as Hâ€Source for Bioâ€Derived Fuels and Additives Production. Advanced Energy Materials, 2022, 12, .	10.2	26
114	Synthesis of β yano Ketones Promoted by a Heterogeneous Fluoride Catalyst. Advanced Synthesis and Catalysis, 2016, 358, 2134-2139.	2.1	25
115	A Catalytic Peterson-like Synthesis of Alkenyl Nitriles. Organic Letters, 2016, 18, 2680-2683.	2.4	25
116	Boosting biomass valorisation. Synergistic design of continuous flow reactors and water-tolerant polystyrene acid catalysts for a non-stop production of esters. Green Chemistry, 2018, 20, 3222-3231.	4.6	25
117	Biomass Waste-Derived Pd–PiNe Catalyst for the Continuous-Flow Copper-Free Sonogashira Reaction in a CPME–Water Azeotropic Mixture. ACS Sustainable Chemistry and Engineering, 2021, 9, 12196-12204.	3.2	25
118	Hafnium Chloride Tetrahydrofuran Complex-Catalyzed Diels–Alder Cycloadditions of 3-Ethoxycarbonylcoumarins with 1,3-Dienes under Solvent-Free Conditions. Advanced Synthesis and Catalysis, 2006, 348, 297-300.	2.1	24
119	Isolute® Si-carbonate catalyzes the nitronate addition to both aldehydes and electron-poor alkenes under solvent-free conditions. Green Chemistry, 2008, 10, 541.	4.6	24
120	JandaJel as a polymeric support to improve the catalytic efficiency of immobilized-1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) under solvent-free conditions. Green Chemistry, 2011, 13, 3181.	4.6	24
121	E-Factor minimized hydrophosphonylation of aldehydes catalyzed by polystyryl-BEMP under solvent-free conditions. Organic and Biomolecular Chemistry, 2013, 11, 5042.	1.5	24
122	Solid-Supported Ammonium Fluorides in Organic Synthesis. Current Organic Synthesis, 2009, 6, 203-218.	0.7	24
123	Influence of molecular architecture and processing on properties of semiconducting arylacetylene: Insulating poly(vinylidene fluoride) blends. Organic Electronics, 2011, 12, 1886-1892.	1.4	23
124	Heterogeneous Bisoxazoline/Copper Complex: A Green Catalyst for the Enantioselective Reaction of Nitromethane with Substituted Benzaldehydes. European Journal of Organic Chemistry, 2011, 2011, 5551-5554.	1.2	23
125	An Effective and Reusable Hyperbranched Polymer Immobilized Rhodium Catalyst for the Hydroformylation of Olefins. ACS Applied Polymer Materials, 2019, 1, 1496-1504.	2.0	23
126	Sustainable Protocol for the Reduction of Nitroarenes by Heterogeneous Au@SBAâ€15 with NaBH ₄ under Flow Conditions. ChemSusChem, 2019, 12, 3178-3184.	3.6	23

#	Article	IF	CITATIONS
127	Heterogeneous Manganese atalyzed Oxidase Câ^'H/Câ^'O Cyclization to Access Pharmaceutically Active Compounds. ChemCatChem, 2020, 12, 449-454.	1.8	23
128	Valorisation of urban waste to access low-cost heterogeneous palladium catalysts for cross-coupling reactions in biomass-derived Î ³ -valerolactone. Green Chemistry, 2021, 23, 5887-5895.	4.6	22
129	Reusable Pd@PEG Catalyst for Aerobic Dehydrogenative Câ^'H/Câ^'H Arylations of 1,2,3â€Triazoles. Chemistry - A European Journal, 2019, 25, 11427-11431.	1.7	21
130	In(OTf)3-catalyzed thiolysis of 1,2-epoxides by arylthiols under SFC. A new approach for the synthesis of thiazolopyridinium ionic liquids. Green Chemistry, 2006, 8, 191-196.	4.6	20
131	Synthesis of chiral nonracemic PC(sp3)P pincer ligands. Journal of Organometallic Chemistry, 2014, 750, 13-16.	0.8	20
132	Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases. RSC Advances, 2015, 5, 107200-107208.	1.7	20
133	PS-BEMP as a basic catalyst for the phospha-Michael addition to electron-poor alkenes. Organic and Biomolecular Chemistry, 2016, 14, 3521-3525.	1.5	20
134	Sulfenylation of Arenes with Ethyl Arylsulfinates in Water. ACS Omega, 2020, 5, 18515-18526.	1.6	20
135	Polarclean/Water as a Safe and Recoverable Medium for Selective C2-Arylation of Indoles Catalyzed by Pd/C. ACS Sustainable Chemistry and Engineering, 2020, 8, 16441-16450.	3.2	20
136	Stereoselective Ring-Opening Reactions of Epoxides in Water. Current Organic Synthesis, 2011, 8, 319-329.	0.7	19
137	Polarclean as a Sustainable Reaction Medium for the Waste Minimized Synthesis of Heterocyclic Compounds. Frontiers in Chemistry, 2018, 6, 659.	1.8	19
138	Aerobic waste-minimized Pd-catalysed C–H alkenylation in GVL using a tube-in-tube heterogeneous flow reactor. Green Chemistry, 2021, 23, 6576-6582.	4.6	19
139	Catalytic Biomass Upgrading Exploiting Liquid Organic Hydrogen Carriers (LOHCs). ACS Sustainable Chemistry and Engineering, 2021, 9, 9604-9624.	3.2	19
140	A comparative approach to the most sustainable protocol for the β-azidation of α,β-unsaturated ketones and acids. Green Chemistry, 2015, 17, 913-925.	4.6	17
141	I2/DMSO-Catalyzed Transformation of N-tosylhydrazones to 1,2,3-thiadiazoles. Frontiers in Chemistry, 2020, 8, 466.	1.8	17
142	Green Shades in Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 4273-4283.	1.2	17
143	Waste Minimized Multistep Preparation in Flow of β-Amino Acids Starting from α,β-Unsaturated Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2015, 3, 1221-1226.	3.2	16
144	Synthesis, characterization, and comparison of two new copper(II) complexes containing Schiff-base and diazo ligands as new catalysts in CuAAC reaction. Inorganica Chimica Acta, 2019, 492, 213-220.	1.2	16

#	Article	IF	CITATIONS
145	Azeotropes as Powerful Tool for Waste Minimization in Industry and Chemical Processes. Molecules, 2020, 25, 5264.	1.7	16
146	Biofuels and green chemistry - a common journey ahead. Biofuel Research Journal, 2017, 4, 713-714.	7.2	16
147	Sustainable synthetic approach to π-conjugated arylacetylenic semiconductors for bulk heterojunction solar cells. RSC Advances, 2013, 3, 9288.	1.7	15
148	Waste-minimized synthesis of C2 functionalized quinolines exploiting iron-catalysed C–H activation. Green Chemistry, 2021, 23, 490-495.	4.6	15
149	A Wasteâ€Minimized Approach to Cassarâ€Heck Reaction Based on POLITAGâ€Pd ^O Heterogeneous Catalyst and Recoverable Acetonitrile Azeotrope. ChemSusChem, 2021, 14, 3359-3366.	3.6	15
150	Photoresponsive N,N′-disubstituted indigo derivatives. Dyes and Pigments, 2020, 176, 108197.	2.0	14
151	Si-Gly-CD-PdNPs as a hybrid heterogeneous catalyst for environmentally friendly continuous flow Sonogashira cross-coupling. Green Chemistry, 2021, 23, 7210-7218.	4.6	14
152	An Efficient and Waste-Minimized One-Pot Procedure for the Preparation of <i>N</i> -Boc-γ-amino Alcohols Starting from α,β-Unsaturated Ketones in Flow. Organic Process Research and Development, 2016, 20, 474-479.	1.3	13
153	Metal Nanoparticles Catalyzed C–C Bond Formation via C–H Activation. ACS Symposium Series, 2020, , 513-543.	0.5	13
154	A stereoselective organic base-catalyzed protocol for hydroamination of alkynes under solvent-free conditions. Molecular Catalysis, 2018, 455, 188-191.	1.0	13
155	β-Nitroacrylates as key starting materials for the one-pot synthesis of densely functionalized penta-substituted anilines. Tetrahedron, 2012, 68, 8231-8235.	1.0	12
156	Green chemistry. Beilstein Journal of Organic Chemistry, 2016, 12, 2763-2765.	1.3	12
157	Catalyst- and solvent-free conditions as an environmentally benign approach to 4-aryl-3-cyano-hexahydro-4H-1,2-benzoxazine-2-oxides. Green Chemistry, 2008, 10, 327.	4.6	11
158	Challenges and Directions for Green Chemical Engineering—Role of Nanoscale Materials. , 2020, , 1-18.		11
159	Waste-Minimized Cyanosilylation of Carbonyls Using Fluoride on Polymeric Ionic Tags in Batch and under Continuous Flow Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 5740-5749.	3.2	11
160	POLITAG-Pd(0) catalyzed continuous flow hydrogenation of lignin-derived phenolic compounds using sodium formate as a safe H-source. Molecular Catalysis, 2021, 509, 111613.	1.0	11
161	C(sp ³)â^H Arylation Promoted by a Heterogeneous Palladiumâ€Nâ€Heterocyclic Carbene Complex in Batch and Continuous Flow. ChemSusChem, 2022, 15, .	3.6	11
162	Zn(II)-Catalyzed Desymmetrization of <i>meso</i> -Epoxides by Aromatic Amines in Water. Synlett, 2008, 2008, 1574-1578.	1.0	10

#	Article	IF	CITATIONS
163	The Italian National Project of Astrobiology—Life in Space—Origin, Presence, Persistence of Life in Space, from Molecules to Extremophiles. Astrobiology, 2020, 20, 580-582.	1.5	10
164	Waste-Minimized Continuous-Flow Synthesis of Oxindoles Exploiting a Polymer-Supported N Heterocyclic Palladium Carbene Complex in a CPME/Water Azeotrope. ACS Sustainable Chemistry and Engineering, 2022, 10, 3766-3776.	3.2	10
165	Enantioselective Michael Addition of Dimethyl Malonate to (E)-β- Nitrostyrenes Catalyzed by Cinchona Alkaloids Under Solvent-Free Condition. Letters in Organic Chemistry, 2008, 5, 602-606.	0.2	9
166	A Catalytic Approach to the Metal-Free Reaction of Epoxides with Ketene Silyl Acetals for Accessing γ-Lactones. Organic Letters, 2014, 16, 5721-5723.	2.4	9
167	Multistep Flow Procedure for the Waste-Minimized Preparation of <i>N</i> -Boc-ß-Amino Ketones. Journal of Flow Chemistry, 2015, 4, 40-43.	1.2	9
168	Replacing halogenated solvents by a butyl acetate solution of bisphenol S in the transformations of indoles. Green Chemistry, 2021, 23, 3588-3594.	4.6	9
169	Combined crossed molecular beams and computational study on the N(² D) + HCCCN(X ¹ Σ ⁺) reaction and implications for extra-terrestrial environments. Molecular Physics, 2022, 120, .	0.8	9
170	Improving the charge transport performance of solution-processed organic field-effect transistors using green solvent additives. Journal of Materials Chemistry C, 2021, 9, 16506-16515.	2.7	9
171	Selective monomethyl esterification of linear dicarboxylic acids with bifunctional alumina catalysts. Green Chemistry, 2016, 18, 5764-5768.	4.6	8
172	Efficient Liquidâ€Assisted Grinding Selective Aqueous Oxidation of Sulfides Using Supported Heteropolyacid Catalysts. ChemCatChem, 2019, 11, 2537-2545.	1.8	8
173	Metal Nanoparticles as Sustainable Tools for C–N Bond Formation via C–H Activation. Molecules, 2021, 26, 4106.	1.7	8
174	Synthesis and X-ray crystal structure of a Molybdenum(VI) Schiff base complex: Design of a new catalytic system for sustainable olefin epoxidation. Inorganica Chimica Acta, 2020, 511, 119775.	1.2	8
175	Pd-Catalyzed direct C–H arylation of pyrrolo[1,2-a]quinoxalines. Organic and Biomolecular Chemistry, 2022, , .	1.5	8
176	Nucleophilic ring opening of 1,2-epoxides in aqueous medium. Arkivoc, 2003, 2002, 293-311.	0.3	7
177	Green solvent-processed complementary-like inverters based on ambipolar organic thin-film transistors. Journal of Industrial and Engineering Chemistry, 2022, 105, 231-237.	2.9	7
178	Cu-catalyzed direct C1–H trifluoromethylation of pyrrolo[1,2-a]quinoxalines. Tetrahedron, 2022, 105, 132610.	1.0	7
179	Copper(II) Triflate-Sodium Dodecyl Sulfate Catalyzed Preparation of 1,2-Diphenyl-2,3-dihydro-4-pyridones in Aqueous Acidic Medium. Synthesis, 2012, 44, 2181-2184.	1.2	6
180	Synthesis and characterization of a new zwitterionic palladium complex as an environmentally friendly catalyst for the Heck-Mizoroki coupling reaction in GVL. Molecular Catalysis, 2019, 474, 110406.	1.0	6

LUIGI VACCARO

#	Article	IF	CITATIONS
181	Life cycle assessment of multistep benzoxazole synthesis: from batch to waste-minimised continuous flow systems. Green Chemistry, 2022, 24, 325-337.	4.6	6
182	γ-Valerolactone (GVL) as a green and efficient dipolar aprotic reaction medium. Current Opinion in Green and Sustainable Chemistry, 2022, 36, 100634.	3.2	5
183	First Efficient Regio- and Stereoselective Metal-Catalyzed Azidolysis of 2,3-Epoxycarboxylic Acids in Water. Synlett, 2000, 2000, 311-314.	1.0	4
184	ZnCl2as an Efficient Catalyst in the Thiolysis of 1,2-Epoxides by Thiophenol in Aqueous Medium. Synlett, 2003, 2003, 2292-2296.	1.0	4
185	[2]Catenanes on Surfaces as Candidates for Nanoelectronic Devices. Current Organic Synthesis, 2012, 9, 188-198.	0.7	4
186	Recent Applications of Solid-Supported Ammonium Fluorides in Organic Synthesis. Synthesis, 2017, 49, 973-980.	1.2	4
187	Pd/C-catalyzed aerobic oxidative C–H alkenylation of arenes in γ-valerolactone (GVL). Molecular Catalysis, 2021, 513, 111787.	1.0	4
188	Sulfation pattern dependent Iron (III) mediated interleukinâ€8 glycan binding. ChemBioChem, 2021, , .	1.3	4
189	I2/K2S2O8-Promoted ring-opening cyclizations of benzothiazoles and 3-oxo-3-arylpropanenitriles. Molecular Catalysis, 2022, 517, 112051.	1.0	4
190	Pericyclic Reactions in Aqueous Media. , 0, , 146-184.		3
191	Green Solvent Selection for Green-to-Blue Upconversion Based on TTA. ACS Sustainable Chemistry and Engineering, 2022, 10, 9123-9130.	3.2	3
192	C4-Sulfenylation of 4-iodine-1H-pyrazole-5-amine with arylsulfonyl hydrazide in water. Molecular Catalysis, 2022, 528, 112485.	1.0	3
193	Study on the Influence of a Sustainable Medium for the Design of Multistep Processes: Three-Component Synthesis of 2-Nitroamines. Synlett, 2013, 24, 2596-2600.	1.0	2
194	Preparation of Vancomycin Hydrochloride Nanoparticles and Survey of the Factors Influence their Properties. Oriental Journal of Chemistry, 2017, 33, 575-583.	0.1	2
195	Direct synthesis of N-aryl/alkyl 3-carbonylpyrroles from the Morita–Baylis–Hillman acetate of 2,2-dimethoxyacetaldehyde and a primary amine. Green Chemistry, 2021, 23, 9465-9469.	4.6	2
196	Heterogeneous palladium-catalysed intramolecular C(sp3) H α-arylation for the green synthesis of oxindoles. Molecular Catalysis, 2022, 522, 112211.	1.0	2
197	Zr(DS)4 as an Efficient Catalyst for the Aminolysis of Epoxides in Water. Synlett, 2007, 2007, 2683-2686.	1.0	1
198	Additions & amp; Corrections. Green Chemistry, 2012, 14, 3451.	4.6	1

LUIGI VACCARO

#	Article	IF	CITATIONS
199	Twoâ€Step Access to β â€Substituted o â€Hydroxyphenyl Ethyl Ketones from 4â€Chromanone and its Application in Preparation of a Silicaâ€Supported Cobalt(II) Salen Complex. Advanced Synthesis and Catalysis, 2021, 363, 4754.	า 2.1	1
200	CHAPTER 5. Sustainable Batch or Continuous-flow Preparation of Biomass-derived Fuels Using Sulfonated Organic Polymers. RSC Green Chemistry, 2019, , 79-114.	0.0	1
201	Green solvents for organic electronics processing. , 2022, , 425-462.		1
202	Macroreticular POLITAG-Pd(0) for the waste minimized hydrogenation/reductive amination of phenols using formic acid as hydrogen source. Catalysis Today, 2023, 424, 113833.	2.2	1
203	Thiolysis of 1,2-Epoxides by Thiophenol Catalyzed under Solvent-Free Conditions ChemInform, 2003, 34, no.	0.1	0
204	Zn(II)-Catalyzed Thiolysis of Oxiranes in Water under Neutral Conditions ChemInform, 2004, 35, no.	0.1	0
205	3-Nitrocoumarins as Dienophiles in the Diels—Alder Reaction in Water. An Approach to the Synthesis of Nitrotetrahydrobenzo[c]chromenones and Dihydrodibenzo[b,d]furans ChemInform, 2004, 35, no.	0.1	0
206	Indium Salt Promoted Organic Reactions. ChemInform, 2004, 35, no.	0.1	0
207	NaOH-Catalyzed Thiolysis of α,β-Epoxyketones in Water. A Key Step in the Synthesis of Target Molecules Starting from α,β-Unsaturated Ketones ChemInform, 2004, 35, no.	0.1	0
208	TBAF-Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles under Solventless Conditions ChemInform, 2004, 35, no.	0.1	0
209	Solvent-Free Al(OTf)3-Catalyzed Aminolysis of 1,2-Epoxides by 2-Picolylamine: A Key Step in the Synthesis of Ionic Liquids ChemInform, 2005, 36, no.	0.1	0
210	Polystyryl-Supported TBD as an Efficient and Reusable Catalyst under Solvent-Free Conditions ChemInform, 2005, 36, no.	0.1	0
211	One-Pot Synthesis of Benzo[e]1,4-oxathiepin-5-ones under Solvent-Free Condition via Self-Promoted Thiolysis of 1,2-Epoxides ChemInform, 2005, 36, no.	0.1	0
212	Synthesis of 4-Aryl-1H-1,2,3-triazoles Through TBAF-Catalyzed [3 + 2] Cycloaddition of 2-Aryl-1-nitroethenes with TMSN3 under Solvent-Free Conditions ChemInform, 2005, 36, no.	0.1	0
213	InCl3-Catalyzed Regio- and Stereoselective Thiolysis of α,β-Epoxycarboxylic Acids in Water ChemInform, 2006, 37, no.	0.1	0
214	Thiolysis of Alkyl―and Arylâ€1,2â€epoxides in Water Catalyzed by InCl ₃ ChemInform, 2002, 33, 52-52.	0.1	0
215	Semiconducting Arylacetylene:Insulating Polymer Blends for Organic-Based Electronic Devices. Materials Research Society Symposia Proceedings, 2012, 1402, 94.	0.1	0

216 Water as Reaction Medium in the Synthetic Processes Involving Epoxides. , 2012, , 209-232.

#	Article	IF	CITATIONS
217	Frontispiece: Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bio-Based Reaction Media. Chemistry - A European Journal, 2018, 24, .	1.7	Ο
218	Front Cover Picture: A Sulfoneâ€Containing Imidazoliumâ€Based BrÃ,nsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate (Adv. Synth. Catal. 14/2019). Advanced Synthesis and Catalysis, 2019, 361, 3239-3239.	2.1	0
219	Key trends in sustainable approaches to the synthesis of semiconducting polymers. , 2019, , 43-89.		0
220	Green Reaction Media for Cross-Coupling Reactions: A Recent Overview and Possible Directions. Series on Chemistry, Energy and the Environment, 2018, , 177-204.	0.3	0