Yingzi Cong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9176746/publications.pdf

Version: 2024-02-01

126	10,711	46	99
papers	citations	h-index	g-index
127	127	127	12782 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology, 2017, 52, 1-8.	5.1	632
2	Bacterial flagellin is a dominant antigen in Crohn disease. Journal of Clinical Investigation, 2004, 113, 1296-1306.	8.2	628
3	Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nature Communications, 2020, 11, 4457.	12.8	480
4	Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunological Reviews, 2005, 206, 260-276.	6.0	449
5	Antibodies to CBir1 Flagellin Define a Unique Response That Is Associated Independently With Complicated Crohn's Disease. Gastroenterology, 2005, 128, 2020-2028.	1.3	439
6	Monoclonal Anti–Interleukin 23 Reverses Active Colitis in a T Cell–Mediated Model in Mice. Gastroenterology, 2007, 132, 2359-2370.	1.3	414
7	Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nature Communications, 2018, 9, 3555.	12.8	380
8	A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19256-19261.	7.1	377
9	Bacterial flagellin is a dominant antigen in Crohn disease. Journal of Clinical Investigation, 2004, 113, 1296-1306.	8.2	377
10	CD4+ T Cells Reactive to Enteric Bacterial Antigens in Spontaneously Colitic C3H/HeJBir Mice: Increased T Helper Cell Type 1 Response and Ability to Transfer Disease. Journal of Experimental Medicine, 1998, 187, 855-864.	8.5	365
11	GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunology, 2018, 11, 752-762.	6.0	322
12	Th17 Cells Upregulate Polymeric Ig Receptor and Intestinal IgA and Contribute to Intestinal Homeostasis. Journal of Immunology, 2012, 189, 4666-4673.	0.8	209
13	Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. Journal of Experimental Medicine, 2010, 207, 1321-1332.	8.5	200
14	Bacterial-Reactive T Regulatory Cells Inhibit Pathogenic Immune Responses to the Enteric Flora. Journal of Immunology, 2002, 169, 6112-6119.	0.8	195
15	TGF-Î ² Promotes Th17 Cell Development through Inhibition of SOCS3. Journal of Immunology, 2009, 183, 97-105.	0.8	186
16	Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cellular and Molecular Immunology, 2021, 18, 866-877.	10.5	175
17	CD177 ⁺ neutrophils as functionally activated neutrophils negatively regulate IBD. Gut, 2018, 67, 1052-1063.	12.1	159
18	Th17 Cells Induce Colitis and Promote Th1 Cell Responses through IL-17 Induction of Innate IL-12 and IL-23 Production. Journal of Immunology, 2011, 186, 6313-6318.	0.8	157

#	Article	lF	Citations
19	Molecular Mechanism of Lipopolysaccharide-Induced SOCS-3 Gene Expression in Macrophages and Microglia. Journal of Immunology, 2007, 179, 5966-5976.	0.8	152
20	miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD. Gut, 2015, 64, $1755-1764$.	12.1	143
21	Interleukin-12 Converts Foxp3+ Regulatory T Cells to Interferon–γ-Producing Foxp3+ T Cells That Inhibit Colitis. Gastroenterology, 2011, 140, 2031-2043.	1.3	141
22	MicroRNA-31 Reduces Inflammatory Signaling and Promotes Regeneration in Colon Epithelium, and Delivery of Mimics in Microspheres Reduces Colitis in Mice. Gastroenterology, 2019, 156, 2281-2296.e6.	1.3	140
23	Microbiota Downregulates Dendritic Cell Expression of miR-10a, Which Targets IL-12/IL-23p40. Journal of Immunology, 2011, 187, 5879-5886.	0.8	137
24	miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF- $\hat{l}\pm$ in IBD. Gut, 2016, 65, 1938-1950.	12.1	137
25	MicroRNA 301A Promotes Intestinal Inflammation and Colitis-Associated Cancer Development by Inhibiting BTG1. Gastroenterology, 2017, 152, 1434-1448.e15.	1.3	118
26	Fenofibrate Represses Interleukin-17 and Interferon-γ Expression and Improves Colitis in Interleukin-10–Deficient Mice. Gastroenterology, 2007, 133, 108-123.	1.3	117
27	COVID-19 and the Digestive System. American Journal of Gastroenterology, 2020, 115, 1003-1006.	0.4	113
28	Microbiota Metabolite Butyrate Differentially Regulates Th1 and Th17 Cells' Differentiation and Function in Induction of Colitis. Inflammatory Bowel Diseases, 2019, 25, 1450-1461.	1.9	112
29	Isolation of flagellated bacteria implicated in Crohn $\hat{\mathbb{E}}$ 4s disease. Inflammatory Bowel Diseases, 2007, 13, 1191-1201.	1.9	108
30	Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 2012, 3, 332-344.	9.8	100
31	<scp>ERK</scp> differentially regulates <scp>T</scp> h17―and <scp>T</scp> regâ€cell development and contributes to the pathogenesis of colitis. European Journal of Immunology, 2013, 43, 1716-1726.	2.9	94
32	Generation of Mucosal Dendritic Cells from Bone Marrow Reveals a Critical Role of Retinoic Acid. Journal of Immunology, 2010, 185, 5915-5925.	0.8	93
33	Colitis Induced by Enteric Bacterial Antigen-Specific CD4+ T Cells Requires CD40-CD40 Ligand Interactions for a Sustained Increase in Mucosal IL-12. Journal of Immunology, 2000, 165, 2173-2182.	0.8	87
34	Curcumin induces the tolerogenic dendritic cell that promotes differentiation of intestineâ€protective regulatory T cells. European Journal of Immunology, 2009, 39, 3134-3146.	2.9	86
35	mTOR Mediates IL-23 Induction of Neutrophil IL-17 and IL-22 Production. Journal of Immunology, 2016, 196, 4390-4399.	0.8	85
36	TGF- \hat{l}^2 converts Th1 cells into Th17 cells through stimulation of Runx1 expression. European Journal of Immunology, 2015, 45, 1010-1018.	2.9	84

#	Article	IF	CITATIONS
37	Tight Mucosal Compartmentation of the Murine Immune Response to Antigens of the Enteric Microbiota. Gastroenterology, 2006, 130, 2050-2059.	1.3	83
38	Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precision Clinical Medicine, 2019, 2, 110-119.	3.3	81
39	Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2020, 26, 11-20.	1.9	79
40	IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia. Experimental Parasitology, 2015, 156, 68-78.	1.2	70
41	Cdcs1, a Major Colitogenic Locus in Mice, Regulates Innate and Adaptive Immune Response to Enteric Bacterial Antigens. Gastroenterology, 2005, 129, 1473-1484.	1.3	69
42	Heritable susceptibility for colitis in mice induced by IL-10 deficiency. Inflammatory Bowel Diseases, 2000, 6, 290-302.	1.9	67
43	Effects of cholera toxin on macrophage production of co-stimulatory cytokines. European Journal of Immunology, 2001, 31, 64-71.	2.9	61
44	Heritable Susceptibility for Colitis in Mice Induced by IL-10 Deficiency. Inflammatory Bowel Diseases, 2000, 6, 290-302.	1.9	57
45	CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer. Carcinogenesis, 2018, 39, 272-282.	2.8	54
46	Downregulation of micro <scp>RNA</scp> â€107 in intestinal <scp>CD</scp> 11c ⁺ myeloid cells in response to microbiota and proinflammatory cytokines increases <scp>IL</scp> â€23p19 expression. European Journal of Immunology, 2014, 44, 673-682.	2.9	52
47	TLR5 mediates CD172α+ intestinal lamina propria dendritic cell induction of Th17 cells. Scientific Reports, 2016, 6, 22040.	3.3	49
48	Generation of Antigen-Specific, Foxp3-Expressing CD4+ Regulatory T Cells by Inhibition of APC Proteosome Function. Journal of Immunology, 2005, 174, 2787-2795.	0.8	48
49	CXCL10-Producing Mucosal CD4 ⁺ T Cells, NK Cells, and NKT Cells Are Associated with Chronic Colitis in IL-10 ^{â^'/â^'} Mice, Which Can Be Abrogated by Anti-CXCL10 Antibody Inhibition. Journal of Interferon and Cytokine Research, 2008, 28, 31-43.	1.2	47
50	Tripartite motif-containing (TRIM) 21 negatively regulates intestinal mucosal inflammation through inhibiting TH1/TH17Âcell differentiation in patients with inflammatory bowel diseases. Journal of Allergy and Clinical Immunology, 2018, 142, 1218-1228.e12.	2.9	46
51	Microbiota Metabolite Short-Chain Fatty Acids Facilitate Mucosal Adjuvant Activity of Cholera Toxin through GPR43. Journal of Immunology, 2019, 203, 282-292.	0.8	46
52	Microbiota regulation of inflammatory bowel disease and colorectal cancer. Seminars in Cancer Biology, 2013, 23, 543-552.	9.6	45
53	Microbiota dysbiosis and its pathophysiological significance in bowel obstruction. Scientific Reports, 2018, 8, 13044.	3.3	45
54	MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases. Journal of Autoimmunity, 2019, 101, 109-120.	6.5	44

#	Article	IF	CITATIONS
55	Immuno-bacterial homeostasis in the gut: new insights into an old enigma. Seminars in Immunology, 2001, 13, 187-194.	5.6	41
56	TLR4 regulates IFN- \hat{l}^3 and IL-17 production by both thymic and induced Foxp3+ Tregs during intestinal inflammation. Journal of Leukocyte Biology, 2014, 96, 895-905.	3.3	41
57	Intrahepatic Innate Lymphoid Cells Secrete IL-17A and IL-17F That Are Crucial for T Cell Priming in Viral Infection. Journal of Immunology, 2014, 192, 3289-3300.	0.8	40
58	Mucoadhesive-to-penetrating controllable peptosomes-in-microspheres co-loaded with anti-miR-31 oligonucleotide and Curcumin for targeted colorectal cancer therapy. Theranostics, 2020, 10, 3594-3611.	10.0	40
59	Propionate Enhances Cell Speed and Persistence to Promote Intestinal Epithelial Turnover and Repair. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1023-1044.	4.5	40
60	Treg cell–IgA axis in maintenance of host immune homeostasis with microbiota. International Immunopharmacology, 2011, 11, 589-592.	3.8	39
61	Anti-TNF Therapy Induces CD4+ T-Cell Production of IL-22 and Promotes Epithelial Repairs in Patients With Crohn's Disease. Inflammatory Bowel Diseases, 2018, 24, 1733-1744.	1.9	39
62	Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression. Biochemical Journal, 2015, 465, 295-303.	3.7	38
63	Commensal A4 bacteria inhibit intestinal Th $2\hat{a}\in ell$ responses through induction of dendritic cell TGF $\hat{a}\in \hat{l}^2$ production. European Journal of Immunology, 2016, 46, 1162-1167.	2.9	38
64	Interleukin-33 Promotes REG3 \hat{i}^3 Expression in Intestinal Epithelial Cells and Regulates Gut Microbiota. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 21-36.	4.5	38
65	Understanding Immune-Microbial Homeostasis in Intestine. Immunologic Research, 2002, 26, 087-094.	2.9	37
66	Cycling Stem Cells Are Radioresistant and Regenerate the Intestine. Cell Reports, 2020, 32, 107952.	6.4	37
67	Microbiota-specific Th17 Cells. Inflammatory Bowel Diseases, 2016, 22, 1473-1482.	1.9	36
68	Neutrophils Promote Amphiregulin Production in Intestinal Epithelial Cells through TGF- \hat{l}^2 and Contribute to Intestinal Homeostasis. Journal of Immunology, 2018, 201, 2492-2501.	0.8	34
69	Secreted stromal protein ISLR promotes intestinal regeneration by suppressing epithelial Hippo signaling. EMBO Journal, 2020, 39, e103255.	7.8	34
70	Critical role of ROCK2 activity in facilitating mucosal CD4 + T cell activation in inflammatory bowel disease. Journal of Autoimmunity, 2018, 89, 125-138.	6.5	33
71	NIK signaling axis regulates dendritic cell function in intestinal immunity and homeostasis. Nature Immunology, 2018, 19, 1224-1235.	14.5	32
72	IL-33 induces immunosuppressive neutrophils via a type 2 innate lymphoid cell/IL-13/STAT6 axis and protects the liver against injury in LCMV infection-induced viral hepatitis. Cellular and Molecular Immunology, 2019, 16, 126-137.	10.5	32

#	Article	IF	CITATIONS
73	Critical Role of CD6highCD4+ T Cells in Driving Th1/Th17 Cell Immune Responses and Mucosal Inflammation in IBD. Journal of Crohn's and Colitis, 2019, 13, 510-524.	1.3	31
74	GPR120 Inhibits Colitis Through Regulation of CD4+ T Cell Interleukin 10 Production. Gastroenterology, 2022, 162, 150-165.	1.3	31
75	Identification of an immunodominant T cell epitope on cholera toxin. European Journal of Immunology, 1996, 26, 2587-2594.	2.9	30
76	Immunomodulation for gastrointestinal infections. Expert Review of Anti-Infective Therapy, 2012, 10, 391-400.	4.4	30
77	Attenuation of Intestinal Inflammation in Interleukin-10-Deficient Mice Infected with Citrobacter rodentium. Infection and Immunity, 2014, 82, 1949-1958.	2.2	30
78	The C3H/HeJBir Mouse Model: A High Susceptibility Phenotype for Colitis. International Reviews of Immunology, 2000, 19, 63-75.	3.3	29
79	Probiotics and Immune Regulation of Inflammatory Bowel Diseases. Inflammation and Allergy: Drug Targets, 2003, 2, 145-154.	3.1	29
80	Unexpected Regulatory Role of CCR9 in Regulatory T Cell Development. PLoS ONE, 2015, 10, e0134100.	2.5	29
81	Deletion of the Braun Lipoprotein-Encoding Gene and Altering the Function of Lipopolysaccharide Attenuate the Plague Bacterium. Infection and Immunity, 2013, 81, 815-828.	2.2	27
82	Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice. Journal of Virology, 2016, 90, 1333-1344.	3.4	27
83	Matrix metalloproteinases cleave membrane-bound PD-L1 on CD90+ (myo-)fibroblasts in Crohn's disease and regulate Th1/Th17 cell responses. International Immunology, 2020, 32, 57-68.	4.0	26
84	Increased Ileal Immunoglobulin A Production and Immunoglobulin A-Coated Bacteria in Diarrhea-Predominant Irritable Bowel Syndrome. Clinical and Translational Gastroenterology, 2020, 11, e00146.	2.5	25
85	Regulation of Toll-like Receptor 5 Gene Expression and Function on Mucosal Dendritic Cells. PLoS ONE, 2012, 7, e35918.	2.5	24
86	Retinoic Acid Regulates Immune Responses by Promoting IL-22 and Modulating S100 Proteins in Viral Hepatitis. Journal of Immunology, 2017, 198, 3448-3460.	0.8	24
87	Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease. Scientific Reports, 2015, 5, 16344.	3.3	23
88	Neonatal Colonic Inflammation Epigenetically Aggravates Epithelial Inflammatory Responses to Injury in Adult Life. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 65-78.	4.5	23
89	$ROR\hat{I}^3$ t Represses IL-10 Production in Th17 Cells To Maintain Their Pathogenicity in Inducing Intestinal Inflammation. Journal of Immunology, 2019, 202, 79-92.	0.8	23
90	Deletion of Braun Lipoprotein and Plasminogen-Activating Protease-Encoding Genes Attenuates Yersinia pestis in Mouse Models of Bubonic and Pneumonic Plague. Infection and Immunity, 2014, 82, 2485-2503.	2.2	22

#	Article	IF	Citations
91	Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism. PLoS ONE, 2011, 6, e24869.	2.5	21
92	Gut microbiota and butyrate contribute to nonalcoholic fatty liver disease in premenopause due to estrogen deficiency. PLoS ONE, 2022, 17, e0262855.	2.5	21
93	ILâ€33 activates mTORC1 and modulates glycolytic metabolism in CD8 ⁺ T cells. Immunology, 2022, 165, 61-73.	4.4	20
94	New developments in experimental models of inflammatory bowel disease. Current Opinion in Gastroenterology, 2004, 20, 360-367.	2.3	18
95	Immunisation of two rodent species with new live-attenuated mutants of Yersinia pestis CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague. Npj Vaccines, 2016, 1, 16020.	6.0	17
96	Molecular Approaches to the Role of the Microbiota in Inflammatory Bowel Disease. Annals of the New York Academy of Sciences, 2006, 1072, 39-51.	3.8	16
97	STING controls intestinal homeostasis through promoting antimicrobial peptide expression in epithelial cells. FASEB Journal, 2020, 34, 15417-15430.	0.5	16
98	Regional differences in L-selectin expression in murine intestinal lymphocytes⯆⯆⯆. Gastroenterology, 1998, 114, 965-974.	1.3	15
99	A West Nile virus NS4B-P38G mutant strain induces adaptive immunity via TLR7-MyD88-dependent and independent signaling pathways. Vaccine, 2013, 31, 4143-4151.	3.8	15
100	Neonatal Injury Increases Gut Permeability by Epigenetically Suppressing E-Cadherin in Adulthood. Journal of Immunology, 2020, 204, 980-989.	0.8	14
101	Target-Based Small Molecule Drug Discovery Towards Novel Therapeutics for Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2021, 27, S38-S62.	1.9	14
102	Protective Immunity Elicited by Oral Immunization of Mice with Salmonella enterica Serovar Typhimurium Braun Lipoprotein (Lpp) and Acetyltransferase (MsbB) Mutants. Frontiers in Cellular and Infection Microbiology, 2016, 6, 148.	3.9	13
103	Endomicroscopy Will Track Injected Mesenchymal Stem Cells in Rat Colitis Models. Inflammatory Bowel Diseases, 2015, 21, 2068-2077.	1.9	12
104	A tightly regulated IL-22 response maintains immune functions and homeostasis in systemic viral infection. Scientific Reports, 2017, 7, 3857.	3.3	12
105	Immunomodulatory and Antibacterial Effects of Cystatin 9 against Francisella tularensis. Molecular Medicine, 2013, 19, 263-275.	4.4	11
106	Dissemination of non-typhoidal Salmonella during Plasmodium chabaudi infection affects anti-malarial immunity. Parasitology Research, 2019, 118, 2277-2285.	1.6	10
107	Sex-related Differences in Inflammatory Bowel Diseases: The Potential Role of Sex Hormones. Inflammatory Bowel Diseases, 2022, 28, 1766-1775.	1.9	10
108	Gene Disruption and Immunity in Experimental Colitis. Inflammatory Bowel Diseases, 2004, 10, S25-S28.	1.9	8

#	Article	IF	CITATIONS
109	Microbiota. Gut Microbes, 2010, 1, 388-391.	9.8	8
110	Acute stress disrupts intestinal homeostasis via GDNFâ€RET. Cell Proliferation, 2020, 53, e12889.	5.3	7
111	Microbiota Regulation of Inflammatory Bowel Disease. Inflammation and Allergy: Drug Targets, 2014, 13, 65-73.	1.8	6
112	L″actate promotes intestinal epithelial cell migration to inhibit colitis. FASEB Journal, 2021, 35, e21554.	0.5	6
113	TOB1 Blocks Intestinal Mucosal Inflammation Through Inducing ID2-Mediated Suppression of Th1/Th17 Cell Immune Responses in IBD. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1201-1221.	4.5	6
114	Critical roles of G protein-coupled receptors in regulating intestinal homeostasis and inflammatory bowel disease. Mucosal Immunology, 2022, 15, 819-828.	6.0	6
115	MicroRNA-10a Negatively Regulates CD4+ T Cell IL-10 Production through Suppression of Blimp1. Journal of Immunology, 2021, 207, 985-995.	0.8	4
116	Proliferation and autoantibody production by mouse thyroglobulin (MTg)-specific B cells activated in vitro by MTg and MTg-specific T cells. Immunology Letters, 1995, 45, 189-193.	2.5	3
117	IL-21 Promotes Intestinal Memory IgA Responses. Journal of Immunology, 2020, 205, 1944-1952.	0.8	3
118	Induction of Intestinal Inflammation by Adoptive Transfer of CBir1 TCR Transgenic CD4 ⁺ T Cells to Immunodeficient Mice. Journal of Visualized Experiments, 2021, , .	0.3	3
119	Molecular Gastronomy: How to Make the Critical Intestinal Foxp3+ Treg Cell. Gastroenterology, 2011, 141, 1559-1562.	1.3	2
120	ALPK1: a pattern recognition receptor for bacterial ADP-heptose. Precision Clinical Medicine, 2018, 1, 57-59.	3.3	2
121	Different flavors of IL-21 in regulation of intestinal IgA to commensals. Mucosal Immunology, 2019, 12, 36-38.	6.0	2
122	The dominant immune response to intestinal bacterial antigens is ignorance, rather than tolerance. Gastroenterology, 2003, 124, A60.	1.3	1
123	Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. Journal of Experimental Medicine, 2010, 207, 1569-1569.	8.5	1
124	Gut Homing Molecule Regulation of the Pathogenesis and Treatment of Inflammatory Bowel Diseases. Inflammation and Allergy: Drug Targets, 2015, 14, 4-12.	1.8	1
125	The disruption of intestinal homeostasis when foods are colored red., 2022, 19, 855-857.		1
126	Alterations of T Lymphocytes in Inflammatory Bowel Diseases. Advances in Experimental Medicine and Biology, 2006, 579, 133-148.	1.6	0