Rupesh K Deshmukh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9176708/publications.pdf

Version: 2024-02-01

129 papers 6,444 citations

43 h-index 79644 73 g-index

145 all docs

145 docs citations

145 times ranked 5462 citing authors

#	Article	IF	CITATIONS
1	Speed Breeding Opportunities and Challenges for Crop Improvement. Journal of Plant Growth Regulation, 2023, 42, 46-59.	2.8	9
2	Unexplored nutritive potential of tomato to combat global malnutrition. Critical Reviews in Food Science and Nutrition, 2022, 62, 1003-1034.	5.4	34
3	Metalloids in plants: A systematic discussion beyond description. Annals of Applied Biology, 2022, 180, 7-25.	1.3	5
4	Random mutagenesis in vegetatively propagated crops: opportunities, challenges and genome editing prospects. Molecular Biology Reports, 2022, 49, 5729-5749.	1.0	7
5	Outstanding Questions on the Beneficial Role of Silicon in Crop Plants. Plant and Cell Physiology, 2022, 63, 4-18.	1.5	29
6	Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan). Environmental Pollution, 2022, 294, 118606.	3.7	11
7	Understanding the role of SWEET genes in fruit development and abiotic stress in pomegranate (Punica granatum L.). Molecular Biology Reports, 2022, 49, 1329-1339.	1.0	6
8	Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. Environmental Pollution, 2022, 300, 118887.	3.7	23
9	Recent biotechnological avenues in crop improvement and stress management. Journal of Biotechnology, 2022, 349, 21-24.	1.9	1
10	Deciphering Haplotypic Variation and Gene Expression Dynamics Associated with Nutritional and Cooking Quality in Rice. Cells, 2022, 11, 1144.	1.8	1
11	Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. Physiologia Plantarum, 2022, 174, e13652.	2.6	31
12	Seed priming with melatonin: A promising approach to combat abiotic stress in plants. Plant Stress, 2022, 4, 100071.	2.7	25
13	Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. Biology, 2022, 11, 632.	1.3	4
14	Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. Journal of Fungi (Basel, Switzerland), 2022, 8, 584.	1.5	32
15	Silicon nanoforms in crop improvement and stress management. Chemosphere, 2022, 305, 135165.	4.2	25
16	Opportunity and challenges for nanotechnology application for genome editing in plants. , 2022, 1, 100001.		15
17	Priming-mediated abiotic stress management in plants: Recent avenues and future directions. Plant Stress, 2022, 5, 100097.	2.7	2
18	Ensuring Global Food Security by Improving Protein Content in Major Grain Legumes Using Breeding and â€~Omics' Tools. International Journal of Molecular Sciences, 2022, 23, 7710.	1.8	9

#	Article	IF	CITATIONS
19	Dissecting the nutrient partitioning mechanism in rice grain using spatially resolved gene expression profiling. Journal of Experimental Botany, 2021, 72, 2212-2230.	2.4	13
20	Understanding aquaporin transport system, silicon and other metalloids uptake and deposition in bottle gourd (Lagenaria siceraria). Journal of Hazardous Materials, 2021, 409, 124598.	6.5	13
21	Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum, 2021, 172, 847-868.	2.6	131
22	Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. Journal of Hazardous Materials, 2021, 408, 124820.	6.5	55
23	Soybean transporter database: A comprehensive database for identification and exploration of natural variants in soybean transporter genes. Physiologia Plantarum, 2021, 171, 756-770.	2.6	12
24	Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. Journal of Hazardous Materials, 2021, 408, 124910.	6.5	22
25	Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns. Nanoscale Advances, 2021, 3, 4019-4028.	2.2	50
26	Computational tools and approaches for aquaporin (AQP) research., 2021,, 1-32.		0
27	Histochemical Techniques in Plant Science: More Than Meets the Eye. Plant and Cell Physiology, 2021, 62, 1509-1527.	1.5	7
28	Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiologia Plantarum, 2021, 172, 258-274.	2.6	22
29	Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 2021, 184, 104367.	2.0	24
30	Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Critical Reviews in Biotechnology, 2021, 41, 715-730.	5.1	73
31	Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry, 2021, 162, 110-123.	2.8	70
32	Characterization of influx and efflux silicon transporters and understanding their role in the osmotic stress tolerance in finger millet (Eleusine coracana (L.) Gaertn.). Plant Physiology and Biochemistry, 2021, 162, 677-689.	2.8	11
33	Identification and molecular characterization of rice bran-specific lipases. Plant Cell Reports, 2021, 40, 1215-1228.	2.8	8
34	Reference gene identification for gene expression analysis in rice under different metal stress. Journal of Biotechnology, 2021, 332, 83-93.	1.9	11
35	Decoding the genome of superior chapatti quality Indian wheat variety ‰C 306' unravelled novel genomic variants for chapatti and nutrition quality related genes. Genomics, 2021, 113, 1919-1929.	1.3	5
36	Lsi2: A black box in plant silicon transport. Plant and Soil, 2021, 466, 1-20.	1.8	22

3

#	Article	IF	CITATIONS
37	Genome-Wide Analysis of Four Pathotypes of Wheat Rust Pathogen (Puccinia graminis) Reveals Structural Variations and Diversifying Selection. Journal of Fungi (Basel, Switzerland), 2021, 7, 701.	1.5	2
38	Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. Journal of Biotechnology, 2021, 336, 10-24.	1.9	17
39	Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (<i>Glycine max</i> L.). Critical Reviews in Plant Sciences, 2021, 40, 398-421.	2.7	17
40	Versatile role of silicon in cereals: Health benefits, uptake mechanism, and evolution. Plant Physiology and Biochemistry, 2021, 165, 173-186.	2.8	10
41	Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiology and Biochemistry, 2021, 166, 593-604.	2.8	24
42	Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping. Environmental and Experimental Botany, 2021, 189, 104545.	2.0	27
43	Exploration of silicate solubilizing bacteria for sustainable agriculture and silicon biogeochemical cycle. Plant Physiology and Biochemistry, 2021, 166, 827-838.	2.8	36
44	Identification of aquaporins and deciphering their role under salinity stress in pomegranate (Punica) Tj ETQq0 0	0 rgBJ /Ov	erlgck 10 Tf 5
45	Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiologia Plantarum, 2020, 168, 437-455.	2.6	94
46	Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (<i>Oryza sativa</i> L.). Critical Reviews in Food Science and Nutrition, 2020, 60, 3304-3320.	5.4	29
47	Tweaking genome-editing approaches for virus interference in crop plants. Plant Physiology and Biochemistry, 2020, 147, 242-250.	2.8	34
48	Integrated QTL mapping, gene expression and nucleotide variation analyses to investigate complex quantitative traits: a case study with the soybeanâ \in " <i>Phytophthora sojae</i> interaction. Plant Biotechnology Journal, 2020, 18, 1492-1494.	4.1	18
49	Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiological Research, 2020, 241, 126567.	2.5	46
50	Understanding aquaporin transport system in highly stress-tolerant and medicinal plant species Jujube (Ziziphus jujuba Mill.). Journal of Biotechnology, 2020, 324, 103-111.	1.9	11
51	Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea. Plants, 2020, 9, 799.	1.6	9
52	Evolutionary Understanding of Metacaspase Genes in Cultivated and Wild Oryza Species and Its Role in Disease Resistance Mechanism in Rice. Genes, 2020, 11, 1412.	1.0	4
53	Harnessing High-throughput Phenotyping and Genotyping for Enhanced Drought Tolerance in Crop Plants. Journal of Biotechnology, 2020, 324, 248-260.	1.9	32
54	New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. Journal of Experimental Botany, 2020, 71, 6775-6788.	2.4	78

#	Article	IF	CITATIONS
55	Genome Editing in Cereals: Approaches, Applications and Challenges. International Journal of Molecular Sciences, 2020, 21, 4040.	1.8	82
56	Spatio-temporal distribution of micronutrients in rice grains and its regulation. Critical Reviews in Biotechnology, 2020, 40, 490-507.	5.1	14
57	Significance of silicon uptake, transport, and deposition in plants. Journal of Experimental Botany, 2020, 71, 6703-6718.	2.4	126
58	Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiology and Biochemistry, 2020, 149, 178-189.	2.8	76
59	Whole Genome Re-sequencing of Soybean Accession EC241780 Providing Genomic Landscape of Candidate Genes Involved in Rust Resistance. Current Genomics, 2020, 21, 504-511.	0.7	8
60	Global Perspectives on Agriculture: Food Security and Nutrition. , 2020, , 1-27.		0
61	The controversies of silicon's role in plant biology. New Phytologist, 2019, 221, 67-85.	3.5	439
62	Si permeability of a deficient Lsi1 aquaporin in tobacco can be enhanced through a conserved residue substitution. Plant Direct, 2019, 3, e00163.	0.8	16
63	Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Critical Reviews in Biotechnology, 2019, 39, 861-883.	5.1	53
64	Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea (Cajanus Cajan) Tj ETQo	10 9.8 rgB	Γ/Qyerlock 10
65	Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells, 2019, 8, 1386.	1.8	115
66	Mutagenesis Approaches and Their Role in Crop Improvement. Plants, 2019, 8, 467.	1.6	42
67	Understanding the Effect of Structural Diversity in WRKY Transcription Factors on DNA Binding Efficiency through Molecular Dynamics Simulation. Biology, 2019, 8, 83.	1.3	8
68	Silicon Uptake and Localisation in Date Palm (Phoenix dactylifera) – A Unique Association With Sclerenchyma. Frontiers in Plant Science, 2019, 10, 988.	1.7	37
69	Blast resistance in Indian rice landraces: Genetic dissection by gene specific markers. PLoS ONE, 2019, 14, e0211061.	1.1	33
70	Expanding Avenue of Fast Neutron Mediated Mutagenesis for Crop Improvement. Plants, 2019, 8, 164.	1.6	37
71	Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. PLoS ONE, 2019, 14, e0217360.	1.1	34
72	Identification of the aquaporin gene family in Cannabis sativa and evidence for the accumulation of silicon in its tissues. Plant Science, 2019, 287, 110167.	1.7	41

#	Article	IF	CITATIONS
73	Mutation Breeding in Tomato: Advances, Applicability and Challenges. Plants, 2019, 8, 128.	1.6	65
74	Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut. BMC Genomics, 2019, 20, 222.	1.2	31
75	Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. Plants, 2019, 8, 71.	1.6	256
76	In defence of the selective transport and role of silicon in plants. New Phytologist, 2019, 223, 514-516.	3. 5	9
77	Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 2019, 9, 73.	1.1	156
78	Revisiting the role of ROS and RNS in plants under changing environment. Environmental and Experimental Botany, 2019, 161 , 1 -3.	2.0	136
79	Assessment of genetic diversity and population structure of Magnaporthe oryzae causing rice blast disease using SSR markers. Physiological and Molecular Plant Pathology, 2019, 106, 157-165.	1.3	16
80	Approaches, Applicability, and Challenges for Development of Climate-Smart Soybean., 2019, , 1-74.		7
81	Progress Toward Development of Climate-Smart Flax: A Perspective on Omics-Assisted Breeding. , 2019, , 239-274.		10
82	Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato. Biology, 2019, 8, 90.	1.3	68
83	Metabolomics: An Emerging Technology for Soybean Improvement. Ecoproduction, 2019, , 175-186.	0.8	6
84	Targeting Transcription Factors for Plant Disease Resistance: Shifting Paradigm. Current Science, 2019, 117, 1598.	0.4	11
85	A genome-wide resource of intron spanning primers compatible for quantitative PCR and intron length polymorphism in rice. Indian Journal of Genetics and Plant Breeding, 2019, 79, .	0.2	0
86	Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using highâ€density linkage mapping. Plant Biotechnology Journal, 2018, 16, 1939-1953.	4.1	93
87	Highâ€density genetic map using wholeâ€genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnology Journal, 2018, 16, 1954-1967.	4.1	90
88	Genomic Resources and Omics-Assisted Breeding Approaches for Pulse Crop Improvement., 2018, , 13-55.		3
89	Whole Genome Characterization of a Few EMS-Induced Mutants of Upland Rice Variety Nagina 22 Reveals a Staggeringly High Frequency of SNPs Which Show High Phenotypic Plasticity Towards the Wild-Type. Frontiers in Plant Science, 2018, 9, 1179.	1.7	40
90	Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biology, 2018, 18, 97.	1.6	80

#	Article	IF	CITATIONS
91	Aquaporins as potential drought tolerance inducing proteins: Towards instigating stress tolerance. Journal of Proteomics, 2017, 169, 233-238.	1.2	92
92	Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Scientific Reports, 2017, 7, 46137.	1.6	82
93	ldentification of a mammalian silicon transporter. American Journal of Physiology - Cell Physiology, 2017, 312, C550-C561.	2.1	45
94	Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Scientific Reports, 2017, 7, 2771.	1.6	84
95	Silicon Transporters and Effects of Silicon Amendments in Strawberry under High Tunnel and Field Conditions. Frontiers in Plant Science, 2017, 8, 949.	1.7	64
96	Understanding Aquaporin Transport System in Eelgrass (Zostera marina L.), an Aquatic Plant Species. Frontiers in Plant Science, 2017, 8, 1334.	1.7	23
97	Editorial: Aquaporins: Dynamic Role and Regulation. Frontiers in Plant Science, 2017, 8, 1420.	1.7	28
98	Editorial: Role of Silicon in Plants. Frontiers in Plant Science, 2017, 8, 1858.	1.7	74
99	Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat. PLoS ONE, 2016, 11, e0156528.	1.1	25
100	Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges. Frontiers in Plant Science, 2016, 7, 126.	1.7	118
101	Identification and Comparative Analysis of Differential Gene Expression in Soybean Leaf Tissue under Drought and Flooding Stress Revealed by RNA-Seq. Frontiers in Plant Science, 2016, 7, 1044.	1.7	116
102	Soybean TIP Gene Family Analysis and Characterization of GmTIP1;5 and GmTIP2;5 Water Transport Activity. Frontiers in Plant Science, 2016, 7, 1564.	1.7	30
103	Comparative Transcriptomic Analysis of Virulence Factors in Leptosphaeria maculans during Compatible and Incompatible Interactions with Canola. Frontiers in Plant Science, 2016, 7, 1784.	1.7	60
104	Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. Frontiers in Plant Science, 2016, 7, 1896.	1.7	76
105	ldentification and characterization of silicon efflux transporters in horsetail (Equisetum arvense). Journal of Plant Physiology, 2016, 200, 82-89.	1.6	73
106	Intron gain, a dominant evolutionary process supporting high levels of gene expression in rice. Journal of Plant Biochemistry and Biotechnology, 2016, 25, 142-146.	0.9	27
107	Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Science, 2016, 242, 342-350.	1.7	78
108	Molecular evolution of aquaporins and silicon influx in plants. Functional Ecology, 2016, 30, 1277-1285.	1.7	149

#	Article	IF	CITATIONS
109	Genome-wide identification and characterization of Xylanase Inhibitor Protein (XIP) genes in cereals. Indian Journal of Genetics and Plant Breeding, 2016, 76, 159.	0.2	7
110	A precise spacing between the <scp>NPA</scp> domains of aquaporins is essential for silicon permeability in plants. Plant Journal, 2015, 83, 489-500.	2.8	191
111	Identification of Novel QTL Governing Root Architectural Traits in an Interspecific Soybean Population. PLoS ONE, 2015, 10, e0120490.	1.1	7 5
112	Expanding Omics Resources for Improvement of Soybean Seed Composition Traits. Frontiers in Plant Science, 2015, 6, 1021.	1.7	105
113	Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 2015, 16, 520.	1.2	173
114	Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics, 2015, 16, 593.	1.2	111
115	Development of chloroplastâ€specific microsatellite markers for molecular characterization of alloplasmic lines and phylogenetic analysis in wheat. Plant Breeding, 2014, 133, 12-18.	1.0	20
116	Integrating omic approaches for abiotic stress tolerance in soybean. Frontiers in Plant Science, 2014, 5, 244.	1.7	213
117	Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology, 2013, 83, 303-315.	2.0	233
118	Diversity Analysis of Bacillus thuringiensis Isolates Recovered from Diverse Habitats in India using Random Amplified Polymorphic DNA (RAPD) Markers. Journal of Biological Sciences, 2013, 13, 514-520.	0.1	4
119	Molecular mapping of the downy mildew resistance gene <i>Ppa3</i> ii>in cauliflower (<i>Brassica) Tj ETQq1 I 137-143.</i>	0.784314 rgBT 0.9	
120	Molecular mapping of quantitative trait loci for flag leaf length and other agronomic traits in rice <i>(Oryza sativa)</i>). Cereal Research Communications, 2012, 40, 362-372.	0.8	11
121	Molecular typing of native <i>Bacillus thuringiensis</i> isolates from diverse habitats in India using REP-PCR and ERIC-PCR analysis. Journal of General and Applied Microbiology, 2012, 58, 83-94.	0.4	16
122	Cyclooxygenase Inhibitory, Cytotoxicity and Free Radical Scavenging Activities of Selected Medicinal Plants Used in Indian Traditional Medicine. Pharmacognosy Journal, 2011, 3, 57-64.	0.3	19
123	Genome-Wide Distribution and Organization of Microsatellites in Plants: An Insight into Marker Development in Brachypodium. PLoS ONE, 2011, 6, e21298.	1.1	184
124	Genomic resources in horticultural crops: Status, utility and challenges. Biotechnology Advances, 2011, 29, 199-209.	6.0	54
125	Analysis of Genetic Diversity in Earthworms using DNA Markers. Zoological Science, 2011, 28, 25.	0.3	9
126	Identification of candidate genes for grain number in rice (Oryza sativa L.). Functional and Integrative Genomics, 2010, 10, 339-347.	1.4	53

#	Article	IF	CITATIONS
127	Highly variable SSR markers suitable for rice genotyping using agarose gels. Molecular Breeding, 2010, 25, 359-364.	1.0	96
128	Evolution of Bcl-2 Anthogenes (BAG) as the Regulators of Cell Death in Wild and Cultivated Oryza Species. Journal of Plant Growth Regulation, 0, , 1 .	2.8	3
129	Understanding aquaporins regulation and silicon uptake in carrot (Daucus carota). Journal of Plant Biochemistry and Biotechnology, 0, , .	0.9	O