Patrice Soumillion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9176302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nature Communications, 2020, 11, 4541.	5.8	485
2	Selection of β-Lactamase on Filamentous Bacteriophage by Catalytic Activity. Journal of Molecular Biology, 1994, 237, 415-422.	2.0	134
3	Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nature Communications, 2013, 4, 2926.	5.8	110
4	A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase. Science, 2015, 349, 66-69.	6.0	92
5	Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nature Communications, 2014, 5, 3615.	5.8	91
6	Engineering a regulatable enzyme for homogeneous immunoassays. Nature Biotechnology, 1999, 17, 67-72.	9.4	77
7	New Generation of Amino Coumarin Methyl Sulfonate-Based Fluorogenic Substrates for Amidase Assays in Droplet-Based Microfluidic Applications. Analytical Chemistry, 2011, 83, 2852-2857.	3.2	77
8	Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5598-5603.	3.3	48
9	Glycan-mediated enhancement of reovirus receptor binding. Nature Communications, 2019, 10, 4460.	5.8	46
10	Enantioselective Transamination in Continuous Flow Mode with Transaminase Immobilized in a Macrocellular Silica Monolith. Catalysts, 2017, 7, 54.	1.6	42
11	Directed evolution for enzyme development in biocatalysis. Current Opinion in Chemical Biology, 2021, 61, 107-113.	2.8	39
12	β-Barrels covalently link peptidoglycan and the outer membrane in the α-proteobacterium Brucella abortus. Nature Microbiology, 2021, 6, 27-33.	5.9	34
13	Selection of Metalloenzymes by Catalytic Activity Using Phage Display and Catalytic Elution. ChemBioChem, 2001, 2, 253-259.	1.3	33
14	TEM-1 β-lactamase as a scaffold for protein recognition and assay. Protein Science, 2002, 11, 1506-1518.	3.1	31
15	Biosynthesis of the nickel-pincer nucleotide cofactor of lactate racemase requires a CTP-dependent cyclometallase. Journal of Biological Chemistry, 2018, 293, 12303-12317.	1.6	31
16	Intein-Mediated Cyclization of Randomized Peptides in the Periplasm of <i>Escherichia coli</i> and Their Extracellular Secretion. ACS Chemical Biology, 2010, 5, 691-700.	1.6	28
17	Active TEM-1 β-lactamase mutants with random peptides inserted in three contiguous surface loops. Protein Science, 2006, 15, 2323-2334.	3.1	21
18	A New Family of Cyanobacterial Penicillin-binding Proteins. Journal of Biological Chemistry, 2008, 283, 32516-32526.	1.6	21

PATRICE SOUMILLION

#	Article	IF	CITATIONS
19	Unexpected complexity in the lactate racemization system of lactic acid bacteria. FEMS Microbiology Reviews, 2017, 41, S71-S83.	3.9	21
20	Selection of allosteric β-lactamase mutants featuring an activity regulation by transition metal ions. Protein Science, 2006, 15, 2335-2343.	3.1	19
21	Structure of PBP-A from Thermosynechococcus elongatus, a Penicillin-Binding Protein Closely Related to Class A β-Lactamases. Journal of Molecular Biology, 2009, 386, 109-120.	2.0	19
22	Escherichia coli d-Malate Dehydrogenase, a Generalist Enzyme Active in the Leucine Biosynthesis Pathway. Journal of Biological Chemistry, 2014, 289, 29086-29096.	1.6	18
23	Uncovering a superfamily of nickel-dependent hydroxyacid racemases and epimerases. Scientific Reports, 2020, 10, 18123.	1.6	14
24	QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLoS ONE, 2017, 12, e0175146.	1.1	10
25	Activityâ€Fed Translation (AFT) Assay: A New Highâ€Throughput Screening Strategy for Enzymes in Droplets. ChemBioChem, 2015, 16, 1343-1349.	1.3	9
26	Molecular dissection of pheromone selectivity in the competence signaling system ComRS of streptococci. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7745-7754.	3.3	8
27	Methyl arachidonyl fluorophosphonate inhibits <i>MycobacteriumÂtuberculosis</i> thioesterase TesA and globally affects vancomycin susceptibility. FEBS Letters, 2020, 594, 79-93.	1.3	7
28	Building Scarless Gene Libraries in the Chromosome of Bacteria. Springer Protocols, 2020, , 189-211.	0.1	6
29	Engineering an Allosteric Binding Site for Aminoglycosides into TEM1â€Î²â€Łactamase. ChemBioChem, 2011, 12, 904-913.	1.3	3
30	Insight into the Self-Assembling Properties of Peptergents: A Molecular Dynamics Simulation Study. International Journal of Molecular Sciences, 2018, 19, 2772.	1.8	3
31	Promiscuous activity of 3â€isopropylmalate dehydrogenase produced at physiological level affords Escherichia coli growth on d â€malate. FEBS Letters, 2020, 594, 2421-2430.	1.3	3
32	Competence shut-off by intracellular pheromone degradation in salivarius streptococci. PLoS Genetics, 2022, 18, e1010198.	1.5	3
33	Coevolution of the bacterial pheromone ComS and sensor ComR fine-tunes natural transformation in streptococci. Journal of Biological Chemistry, 2021, 297, 101346.	1.6	2
34	Phage Display Methodologies. Springer Protocols, 2020, , 125-151.	0.1	0