Massimiliano Fraldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9175401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 3D Griffith peeling model toÂunify and generalize single and double peeling theories. Meccanica, 2022, 57, 1125-1138.	1.2	0
2	Ultrasound waves in tumors via needle irradiation for precise medicine. Scientific Reports, 2022, 12, 6513.	1.6	5
3	A class of periodic lattices for tuning elastic instabilities. Extreme Mechanics Letters, 2022, 55, 101839.	2.0	3
4	Lyapunov stability of competitive cells dynamics in tumor mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 244-263.	1.5	4
5	Bulky auxeticity, tensile buckling and <i>deck-of-cards</i> kinematics emerging from structured continua. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200729.	1.0	5
6	A lesson from earthquake engineering for selectively damaging cancer cell structures. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104533.	1.5	5
7	Topologically engineered 3D printed architectures with superior mechanical strength. Materials Today, 2021, 48, 72-94.	8.3	37
8	On the equilibrium bifurcation of axially deformable holonomic systems: solution of a long-standing enigma. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210327.	1.0	2
9	Multiscale geometry and mechanics of lipid monolayer collapse. Current Topics in Membranes, 2021, 87, 1-45.	0.5	2
10	Burrowing below ground: interaction between soil mechanics and evolution of subterranean mammals. Journal of the Royal Society Interface, 2020, 17, 20190521.	1.5	12
11	Three dimensional bone mineral density changes in the femur over 1Âyear in primary total hip arthroplasty patients. Clinical Biomechanics, 2020, 78, 105092.	0.5	9
12	Mechanobiology predicts raft formations triggered by ligand-receptor activity across the cell membrane. Journal of the Mechanics and Physics of Solids, 2020, 141, 103974.	2.3	14
13	Stability of tunnels according to depth and variability of rock mass parameters. International Journal of Rock Mechanics and Minings Sciences, 2019, 119, 222-229.	2.6	25
14	Euler's Elastica-Based Biomechanics of the Papillary Muscle Approximation in Ischemic Mitral Valve Regurgitation: A Simple 2D Analytical Model. Materials, 2019, 12, 1518.	1.3	15
15	Competition between delamination and tearing in multiple peeling problems. Journal of the Royal Society Interface, 2019, 16, 20190388.	1.5	3
16	Holographic imaging and acoustofluidics: an advantageous combination. , 2019, , .		0
17	Holographic imaging for tracking and phase retrieval in acoustophoresis platforms. , 2019, , .		0
18	Cells competition in tumor growth poroelasticity. Journal of the Mechanics and Physics of Solids, 2018, 112, 345-367.	2.3	44

#	Article	IF	CITATIONS
19	Simulating the ideal geometrical and biomechanical parameters of the pulmonary autograft to prevent failure in the Ross operation. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 269-276.	0.5	22
20	Euler's elastica–based biomechanical assessment for neochordal insertion in the treatment of degenerative mitral valve repair. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 603-605.	0.4	6
21	Disarrangements and instabilities in augmented one-dimensional hyperelasticity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180312.	1.0	7
22	Patient-specific mobility assessment to monitor recovery after total hip arthroplasty. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 1048-1059.	1.0	11
23	Retrieving acoustic energy densities and local pressure amplitudes in microfluidics by holographic time-lapse imaging. Lab on A Chip, 2018, 18, 1921-1927.	3.1	14
24	Nonlinear elasticity and buckling in the simplest soft-strut tensegrity paradigm. International Journal of Non-Linear Mechanics, 2018, 106, 80-88.	1.4	17
25	Is subvalvular repair worthwhile in severe ischemic mitral regurgitation? Subanalysis of the Papillary Muscle Approximation trial. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 286-295.e2.	0.4	53
26	Biomechanics raises solution to avoid geometric mitral valve configuration abnormalities in ischemic mitral regurgitation. Journal of Thoracic Disease, 2017, 9, S624-S628.	0.6	6
27	Analysing the reasons of failure of surgical mitral repair approaches—do we need to better think in biomechanics?. Journal of Thoracic Disease, 2017, 9, S661-S664.	0.6	8
28	Steady-State Thermoelastic Analytical Solutions for Insulated Pipelines. Mathematical Problems in Engineering, 2016, 2016, 1-13.	0.6	1
29	Reply. Journal of the American College of Cardiology, 2016, 68, 1147-1148.	1.2	26
30	Stealthy role of size-driven stresses in biomechanics of breast implants capsular contracture. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 199-208.	1.5	8
31	Biomechanics drive histological wall remodeling of neoaortic root: A mathematical model to study the expression levels of ki 67, metalloprotease, and apoptosis transition. Journal of Biomedical Materials Research - Part A, 2016, 104, 2785-2793.	2.1	25
32	Compliance mismatch and compressive wall stresses drive anomalous remodelling of pulmonary trunks reinforced with Dacron grafts. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 287-302.	1.5	41
33	Stress-shielding, growth and remodeling of pulmonary artery reinforced with copolymer scaffold and transposed into aortic position. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1141-1157.	1.4	37
34	TAVI in Lower Risk Patients. Journal of the American College of Cardiology, 2016, 67, 1380-1381.	1.2	8
35	Predictive factors of long-term results following valve repair in ischemic mitral valve prolapse. International Journal of Cardiology, 2016, 204, 218-228.	0.8	27
36	Use of bioresorbable scaffold for neopulmonary artery in simple transposition of great arteries: Tissue engineering moves steps in pediatric cardiac surgery. International Journal of Cardiology, 2015, 201, 639-643.	0.8	7

MASSIMILIANO FRALDI

#	Article	IF	CITATIONS
37	Thermo-mechanical response of poly(methyl methacrylate) (PMMA) large volumes exposed to time-dependent environmental conditions. Mechanics of Time-Dependent Materials, 2014, 18, 253-273.	2.3	0
38	Influence of actual plastic hinge placement on the behavior of ductile frames. Journal of Zhejiang University: Science A, 2014, 15, 482-495.	1.3	18
39	Delamination onset and design criteria of multilayer flexible packaging under high pressure treatments. Innovative Food Science and Emerging Technologies, 2014, 23, 39-53.	2.7	22
40	Stability Analysis of Circular Beams with Mixed-Mode Imperfections under Uniform Lateral Pressure. Advances in Mechanical Engineering, 2014, 6, 294507.	0.8	6
41	Towards an accurate assessment of UOE pipes under external pressure: Effects of geometric imperfection and material inhomogeneity. Thin-Walled Structures, 2013, 63, 147-162.	2.7	24
42	An Analytical Approach to the Analysis of Inhomogeneous Pipes under External Pressure. Journal of Applied Mathematics, 2012, 2012, 1-14.	0.4	5
43	Critical behavior of flat and stiffened shell structures through different kinematical models: A comparative investigation. Thin-Walled Structures, 2012, 60, 205-215.	2.7	15
44	An analytical model for the buckling of plates under mixed boundary conditions. Engineering Structures, 2012, 38, 78-88.	2.6	20
45	The role of viscoelasticity and stress gradients on the outcome of conductive keratoplasty. Biomechanics and Modeling in Mechanobiology, 2011, 10, 397-412.	1.4	11
46	Evaluation of impending collapse in circular tunnels by analytical and numerical approaches. Tunnelling and Underground Space Technology, 2011, 26, 507-516.	3.0	80
47	An improved formulation for the assessment of the capacity load of circular rings and cylindrical shells under external pressure. Part 2. A comparative study with design codes prescriptions, experimental results and numerical simulations. Thin-Walled Structures, 2011, 49, 1062-1070.	2.7	21
48	An improved formulation for the assessment of the capacity load of circular rings and cylindrical shells under external pressure. Part 1. Analytical derivation. Thin-Walled Structures, 2011, 49, 1054-1061.	2.7	31
49	Topological optimization in hip prosthesis design. Biomechanics and Modeling in Mechanobiology, 2010, 9, 389-402.	1.4	87
50	Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections. International Journal of Solids and Structures, 2010, 47, 216-223.	1.3	162
51	On the prediction of the collapse load of circular concrete columns confined by FRP. Engineering Structures, 2008, 30, 3247-3264.	2.6	19
52	Analysis of testing methods of pipelines for limit state design. Applied Ocean Research, 2008, 30, 297-304.	1.8	18
53	Solutions for Optical Fibres as n-plies FGM Cylinders and Applications. AIP Conference Proceedings, 2008, , .	0.3	0
54	Identification of defects and strain error estimation for bending steel beams using time domain Brillouin distributed optical fiber sensors. Smart Materials and Structures, 2006, 15, 612-622.	1.8	30

MASSIMILIANO FRALDI

#	Article	IF	CITATIONS
55	On singularities associated with the curvilinear anisotropic elastic symmetries. International Journal of Non-Linear Mechanics, 2005, 40, 361-371.	1.4	8
56	Damage detection in bending beams through Brillouin distributed optic-fibre sensor. Bridge Structures, 2005, 1, 355-363.	0.2	13
57	Inhomogeneous elastostatic problem solutions constructed from stress-associated homogeneous solutions. Journal of the Mechanics and Physics of Solids, 2004, 52, 2207-2233.	2.3	21
58	Risk assessment of the impact of pyroclastic currents on the towns located around Vesuvio: a non-linear structural inverse analysis. Bulletin of Volcanology, 2003, 65, 547-561.	1.1	17
59	Chirality in the Torsion of Cylinders with Trigonal Symmetry. Journal of Elasticity, 2002, 69, 121-148.	0.9	16
60	On a general property of a class of homogenized porous media. Mechanics Research Communications, 2001, 28, 213-221.	1.0	4
61	Design of Functionally Graded Beam of Aluminium Foam for Civil Structural Application. Key Engineering Materials, 0, 710, 65-70.	0.4	4