
Olga Krysko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9175/publications.pdf Version: 2024-02-01

OLCA KOVSKO

#	Article	IF	CITATIONS
1	Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 2012, 12, 860-875.	12.8	1,984
2	Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology, 2011, 32, 157-164.	2.9	564
3	ER stress-induced inflammation: does it aid or impede disease progression?. Trends in Molecular Medicine, 2012, 18, 589-598.	3.5	340
4	Many faces of DAMPs in cancer therapy. Cell Death and Disease, 2013, 4, e631-e631.	2.7	234
5	Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. , 2020, 8, e001369.		220
6	Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. , 2019, 7, 350.		183
7	Alternatively activated macrophages and impaired phagocytosis of S.Âaureus in chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 396-403.	2.7	144
8	Necroptotic cell death in anti ancer therapy. Immunological Reviews, 2017, 280, 207-219.	2.8	126
9	Staphylococcal serine protease–like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. Journal of Allergy and Clinical Immunology, 2017, 139, 492-500.e8.	1.5	118
10	The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus –derived serine protease–like protein D. Journal of Allergy and Clinical Immunology, 2018, 141, 549-559.e7.	1.5	109
11	Biologics for chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2020, 145, 725-739.	1.5	109
12	Absence of Functional Peroxisomes from Mouse CNS Causes Dysmyelination and Axon Degeneration. Journal of Neuroscience, 2008, 28, 4015-4027.	1.7	107
13	TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death and Differentiation, 2011, 18, 1316-1325.	5.0	102
14	Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation. Journal of Allergy and Clinical Immunology, 2017, 139, 1849-1860.e6.	1.5	102
15	Characterization of the <i>in vivo</i> immune network of IDO, tryptophan metabolism, PD-L1, and <i>CTLA-4</i> in circulating immune cells in melanoma. Oncolmmunology, 2015, 4, e982382.	2.1	95
16	<i>Staphylococcus aureus</i> Induces a Mucosal Type 2 Immune Response via Epithelial Cell–derived Cytokines. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 452-463.	2.5	94
17	Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique. Apoptosis: an International Journal on Programmed Cell Death, 2004, 9, 495-500.	2.2	85
18	Immunogenic Apoptotic Cell Death and Anticancer Immunity. Advances in Experimental Medicine and Biology, 2016, 930, 133-149.	0.8	82

Olga Krysko

#	Article	IF	CITATIONS
19	Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. Journal of Neuroscience Research, 2007, 85, 58-72.	1.3	81
20	<i>Staphylococcus aureus</i> enterotoxin B facilitates allergic sensitization in experimental asthma. Clinical and Experimental Allergy, 2010, 40, 1079-1090.	1.4	65
21	Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma. Journal of Translational Medicine, 2015, 13, 9.	1.8	54
22	Staphylococcus aureus Orchestrates Type 2 Airway Diseases. Trends in Molecular Medicine, 2019, 25, 696-707.	3.5	53
23	Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials, 2013, 34, 1004-1017.	5.7	46
24	Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation. Neurobiology of Disease, 2013, 58, 258-269.	2.1	44
25	Protease/antiprotease network in allergy: The role of <i>Staphylococcus aureus</i> proteaseâ€like proteins. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2077-2086.	2.7	41
26	An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 99-108.	3.3	41
27	Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1137-1146.	2.2	36
28	Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 968-977.	1.8	36
29	Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Scientific Reports, 2021, 11, 7205.	1.6	36
30	EUFOREA Rhinology Research Forum 2016: report of the brainstorming sessions on needs and priorities in rhinitis and rhinosinusitis. Rhinology, 2017, 55, 202-210.	0.7	36
31	<scp>IL</scp> â€33 signalling contributes to pollutantâ€induced allergic airway inflammation. Clinical and Experimental Allergy, 2018, 48, 1665-1675.	1.4	35
32	Forkhead box protein 3 in human nasal polyp regulatory TÂcells is regulated by the protein suppressor of cytokine signaling 3. Journal of Allergy and Clinical Immunology, 2013, 132, 1314-1321.e3.	1.5	34
33	Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. Journal of Leukocyte Biology, 2019, 106, 57-81.	1.5	33
34	mRNA Encoding a Bispecific Single Domain Antibody Construct Protects against Influenza A Virus Infection in Mice. Molecular Therapy - Nucleic Acids, 2020, 20, 777-787.	2.3	32
35	Different regulation of cigarette smoke induced inflammation in upper versus lower airways. Respiratory Research, 2010, 11, 100.	1.4	31
36	Exacerbation of cigarette smoke-induced pulmonary inflammation by Staphylococcus aureus Enterotoxin B in mice. Respiratory Research, 2011, 12, 69.	1.4	29

OLGA KRYSKO

#	Article	IF	CITATIONS
37	Herpes Simplex Virus Type 1 Infection Facilitates Invasion of Staphylococcus aureus into the Nasal Mucosa and Nasal Polyp Tissue. PLoS ONE, 2012, 7, e39875.	1.1	29
38	Perspective: COVID-19, implications of nasal diseases and consequences for their management. Journal of Allergy and Clinical Immunology, 2020, 146, 67-69.	1.5	25
39	Local Inflammation in Chronic Upper Airway Disease. Current Pharmaceutical Design, 2012, 18, 2336-2346.	0.9	25
40	Combined deficiency of peroxisomal β-oxidation and ether lipid synthesis in mice causes only minor cortical neuronal migration defects but severe hypotonia. Molecular Genetics and Metabolism, 2010, 100, 71-76.	0.5	18
41	TNF/TNF-R1 pathway is involved in doxorubicin-induced acute sterile inflammation. Cell Death and Disease, 2013, 4, e961-e961.	2.7	16
42	The adjuvantâ€like activity of <scp>s</scp> taphylococcal enterotoxin <scp>B</scp> in a murine asthma model is independent of <scp>IL</scp> â€1 <scp>R</scp> signaling. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 446-453.	2.7	15
43	Functional characterization of the first missense variant in <i>CEP78</i> , a founder allele associated with coneâ€rod dystrophy, hearing loss, and reduced male fertility. Human Mutation, 2020, 41, 998-1011.	1.1	15
44	Peroxisomes in zebrafish: distribution pattern and knockdown studies. Histochemistry and Cell Biology, 2010, 134, 39-51.	0.8	14
45	Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal <i>β</i> â€oxidation deficiency. Immunology, 2018, 153, 342-356.	2.0	13
46	Artificial Intelligence Predicts Severity of COVID-19 Based on Correlation of Exaggerated Monocyte Activation, Excessive Organ Damage and Hyperinflammatory Syndrome: A Prospective Clinical Study. Frontiers in Immunology, 2021, 12, 715072.	2.2	13
47	Mouse Strain-Dependent Difference Toward the Staphylococcus aureus Allergen Serine Protease-Like Protein D Reveals a Novel Regulator of IL-33. Frontiers in Immunology, 2020, 11, 582044.	2.2	11
48	Neutrophils Affect IL-33 Processing in Response to the Respiratory Allergen Alternaria alternata. Frontiers in Immunology, 2021, 12, 677848.	2.2	7
49	Comment on "Potent Phagocytic Activity with Impaired Antigen Presentation Identifying Lipopolysaccharide-Tolerant Human Monocytes: Demonstration in Isolated Monocytes from Cystic Fibrosis Patientsâ€: Journal of Immunology, 2009, 183, 4831.1-4832.	0.4	4
50	Nasal Immunity, Rhinitis, and Rhinosinusitis. , 2015, , 1899-1921.		1
51	The Pathogenesis of CRS: An Update. Current Otorhinolaryngology Reports, 2013, 1, 25-32.	0.2	0

52 Role of IL-33 signaling in pollutant-induced allergic airway inflammation. , 2018, , .