David Z I Cherney

List of Publications by Citations

Source: https://exaly.com/author-pdf/9174998/david-z-i-cherney-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

174 papers

7,978 citations

44 h-index 85 g-index

201 ext. papers

10,662 ext. citations

avg, IF

6.58 L-index

#	Paper	IF	Citations
174	Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. <i>Circulation</i> , 2014 , 129, 587-97	16.7	834
173	Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. <i>Circulation</i> , 2016 , 134, 752-72	16.7	631
172	Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. <i>New England Journal of Medicine</i> , 2020 , 383, 1425-1435	59.2	418
171	The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. <i>Cardiovascular Diabetology</i> , 2014 , 13, 28	8.7	313
170	Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. <i>Circulation</i> , 2017 , 136, 1643-1658	16.7	256
169	Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. <i>New England Journal of Medicine</i> , 2021 , 384, 129-139	59.2	243
168	Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. <i>Lancet Diabetes and Endocrinology,the</i> , 2017 , 5, 610-621	18.1	217
167	Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes: A Meta-analysis. <i>JAMA Cardiology</i> , 2021 , 6, 148-158	16.2	194
166	Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. <i>Diabetes Care</i> , 2014 , 37, 1480-3	14.6	186
165	Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. <i>Kidney International</i> , 2018 , 94, 26-	39 9	160
164	Empagliflozin as Adjunctive to Insulin Therapy in Type 1 Diabetes: The EASE Trials. <i>Diabetes Care</i> , 2018 , 41, 2560-2569	14.6	149
163	The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. <i>Diabetologia</i> , 2018 , 61, 2098-2107	10.3	125
162	Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. <i>Current Diabetes Reports</i> , 2013 , 13, 550-9	5.6	120
161	Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging. <i>Circulation</i> , 2019 , 140, 303-315	16.7	114
160	Pooled analysis of Phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. <i>Kidney International</i> , 2018 , 93, 231-244	9.9	113
159	The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. <i>Diabetologia</i> , 2016 , 59, 1860-70	10.3	112
158	Management of patients with hypertensive urgencies and emergencies: a systematic review of the literature. <i>Journal of General Internal Medicine</i> , 2002 , 17, 937-45	4	106

(2015-2015)

157	Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. <i>American Journal of Physiology - Renal Physiology</i> , 2015 , 308, F77-83	4.3	105
156	Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. <i>Nephrology Dialysis Transplantation</i> , 2020 , 35, 274-282	2 4.3	105
155	The Metabolodiuretic Promise of Sodium-Dependent Glucose Cotransporter 2 Inhibition: The Search for the Sweet Spot in Heart Failure. <i>JAMA Cardiology</i> , 2017 , 2, 939-940	16.2	104
154	Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. <i>Current Opinion in Nephrology and Hypertension</i> , 2015 , 24, 96-103	3.5	104
153	Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. Journal of the American Society of Nephrology: JASN, 2006 , 17, 1703-9	12.7	103
152	Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. <i>Diabetologia</i> , 2014 , 57, 2599-602	10.3	102
151	Renal hyperfiltration related to diabetes mellitus and obesity in human disease. <i>World Journal of Diabetes</i> , 2012 , 3, 1-6	4.7	102
150	Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. <i>Kidney International</i> , 2016 , 89, 524-6	9.9	85
149	Early diabetic nephropathy in type 1 diabetes: new insights. <i>Current Opinion in Endocrinology, Diabetes and Obesity</i> , 2014 , 21, 279-86	4	81
148	Sodium glucose cotransport-2 inhibition and intrarenal RAS activity in people with type 1 diabetes. <i>Kidney International</i> , 2014 , 86, 1057-8	9.9	80
147	Uric acid as a biomarker and a therapeutic target in diabetes. <i>Canadian Journal of Diabetes</i> , 2015 , 39, 239-46	2.1	77
146	Efficacy of Ertugliflozin on Heart Failure-Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease: Results of the VERTIS CV Trial. <i>Circulation</i> , 2020 , 142, 2205-2215	16.7	77
145	Effect of direct renin inhibition on renal hemodynamic function, arterial stiffness, and endothelial function in humans with uncomplicated type 1 diabetes: a pilot study. <i>Diabetes Care</i> , 2010 , 33, 361-5	14.6	76
144	The effect of cyclooxygenase-2 inhibition on renal hemodynamic function in humans with type 1 diabetes. <i>Diabetes</i> , 2008 , 57, 688-95	0.9	72
143	Dipeptidyl Peptidase 4 Inhibition Stimulates Distal Tubular Natriuresis and Increases in Circulating SDF-1[In Patients With Type 2 Diabetes. <i>Diabetes Care</i> , 2017 , 40, 1073-1081	14.6	71
142	Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes. <i>Kidney International</i> , 2005 , 68, 1722-8	9.9	65
141	Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. <i>Lancet Diabetes and Endocrinology,the</i> , 2020 , 8, 582-593	18.1	64
140	Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. <i>Circulation: Cardiovascular Imaging</i> , 2015 , 8, e002167	3.9	58

139	Renal hyperfiltration is a determinant of endothelial function responses to cyclooxygenase 2 inhibition in type 1 diabetes. <i>Diabetes Care</i> , 2010 , 33, 1344-6	14.6	55
138	Hyperfiltration and effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2012 , 303, R710-8	3.2	54
137	The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. <i>Nephrology Dialysis Transplantation</i> , 2020 , 35, 1700-1711	4.3	52
136	CCS/CHFS Heart Failure Guidelines: Clinical Trial Update on Functional Mitral Regurgitation, SGLT2 Inhibitors, ARNI in HFpEF, and Tafamidis in Amyloidosis. <i>Canadian Journal of Cardiology</i> , 2020 , 36, 159-1	6 ³ 8	50
135	Analysis from the EMPA-REG OUTCOME trial[Indicates empagliflozin may assist in preventing[the[progression of chronic kidney disease in patients with type 2 diabetes irrespective of medications that alter intrarenal hemodynamics. <i>Kidney International</i> , 2019 , 96, 489-504	9.9	47
134	Early changes in cardiovascular structure and function in adolescents with type 1 diabetes. <i>Cardiovascular Diabetology</i> , 2016 , 15, 31	8.7	46
133	The acute effect of clamped hyperglycemia on the urinary excretion of inflammatory cytokines/chemokines in uncomplicated type 1 diabetes: a pilot study. <i>Diabetes Care</i> , 2011 , 34, 177-80	14.6	46
132	Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. American Journal of Physiology - Renal Physiology, 2018 , 314, F412-F422	4.3	46
131	Insights into the regulation of renal hemodynamic function in diabetic mellitus. <i>Current Diabetes Reviews</i> , 2008 , 4, 280-90	2.7	44
130	The effect of direct renin inhibition alone and in combination with ACE inhibition on endothelial function, arterial stiffness, and renal function in type 1 diabetes. <i>Diabetes Care</i> , 2012 , 35, 2324-30	14.6	40
129	Cystatin C and acute changes in glomerular filtration rate. Clinical Nephrology, 2012, 78, 64-75	2.1	38
128	Use of Canagliflozin in Kidney Transplant Recipients for the Treatment of Type 2 Diabetes: A Case Series. <i>Diabetes Care</i> , 2017 , 40, e75-e76	14.6	37
127	Renal hemodynamic effect of cyclooxygenase 2 inhibition in young men and women with uncomplicated type 1 diabetes mellitus. <i>American Journal of Physiology - Renal Physiology</i> , 2008 , 294, F1336-41	4.3	37
126	Chronic Kidney Disease in Diabetes. <i>Canadian Journal of Diabetes</i> , 2018 , 42 Suppl 1, S201-S209	2.1	36
125	Effect of protein kinase Cbeta inhibition on renal hemodynamic function and urinary biomarkers in humans with type 1 diabetes: a pilot study. <i>Diabetes Care</i> , 2009 , 32, 91-3	14.6	36
124	Characterization and implications of the initial estimated glomerular filtration rate RdipPupon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. <i>Kidney International</i> , 2021 , 99, 750-762	9.9	33
123	Sodium-glucose cotransporter 2 inhibition in type 1 diabetes: simultaneous glucose lowering and renal protection?. <i>Canadian Journal of Diabetes</i> , 2014 , 38, 356-63	2.1	32
122	Use of Sodium Glucose Cotransporter 2 Inhibitors in the Hands of Cardiologists: With Great Power Comes Great Responsibility. <i>Circulation</i> , 2016 , 134, 1915-1917	16.7	32

(2017-2017)

121	Urinary adenosine excretion in type 1 diabetes. <i>American Journal of Physiology - Renal Physiology</i> , 2017 , 313, F184-F191	4.3	29
120	New and old agents in the management of diabetic nephropathy. <i>Current Opinion in Nephrology and Hypertension</i> , 2016 , 25, 232-9	3.5	29
119	Renal hyperfiltration and arterial stiffness in humans with uncomplicated type 1 diabetes. <i>Diabetes Care</i> , 2010 , 33, 2068-70	14.6	29
118	The New Biology of Diabetic Kidney Disease-Mechanisms and Therapeutic Implications. <i>Endocrine Reviews</i> , 2020 , 41,	27.2	29
117	Preventing Early Renal Loss in Diabetes (PERL) Study: A Randomized Double-Blinded Trial of Allopurinol-Rationale, Design, and Baseline Data. <i>Diabetes Care</i> , 2019 , 42, 1454-1463	14.6	28
116	Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. <i>Diabetologia</i> , 2021 , 64, 1256-1267	10.3	28
115	Atherosclerosis and Microvascular Complications: Results From the Canadian Study of Longevity in Type 1 Diabetes. <i>Diabetes Care</i> , 2018 , 41, 2570-2578	14.6	27
114	Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with Type 1 diabetes mellitus. <i>American Journal of Physiology - Renal Physiology</i> , 2018 , 314, F667-F674	4.3	26
113	Renal hyperfiltration defined by high estimated glomerular filtration rate: A risk factor for cardiovascular disease and mortality. <i>Diabetes, Obesity and Metabolism</i> , 2019 , 21, 2368-2383	6.7	26
112	Diurnal Glycemic Patterns during an 8-Week Open-Label Proof-of-Concept Trial of Empagliflozin in Type 1 Diabetes. <i>PLoS ONE</i> , 2015 , 10, e0141085	3.7	26
111	The GomezPequations and renal hemodynamic function in kidney disease research. <i>American Journal of Physiology - Renal Physiology</i> , 2016 , 311, F967-F975	4.3	26
110	Sodium glucose cotransporter 2 inhibition and renal ischemia: implications for future clinical <i>Itrials. Kidney International</i> , 2018 , 94, 459-462	9.9	25
109	Renin-angiotensin-aldosterone system activation in long-standing type 1 diabetes. <i>JCI Insight</i> , 2018 , 3,	9.9	25
108	Natural history and outcome of incarcerated abdominal hernias in peritoneal dialysis patients. <i>Advances in Peritoneal Dialysis Conference on Peritoneal Dialysis</i> , 2004 , 20, 86-9		25
107	The relationship between urinary renin-angiotensin system markers, renal function, and blood pressure in adolescents with type 1 diabetes. <i>American Journal of Physiology - Renal Physiology</i> , 2017 , 312, F335-F342	4.3	24
106	Age is a determinant of acute hemodynamic responses to hyperglycemia and angiotensin II in humans with uncomplicated type 1 diabetes mellitus. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2010 , 299, R206-14	3.2	24
105	Preventing CKD in Developed Countries. <i>Kidney International Reports</i> , 2020 , 5, 263-277	4.1	24
104	Neuropathy and presence of emotional distress and depression in longstanding diabetes: Results from the Canadian study of longevity in type 1 diabetes. <i>Journal of Diabetes and Its Complications</i> , 2017 , 31, 1318-1324	3.2	23

103	Novel therapies for diabetic kidney disease. <i>Kidney International Supplements</i> , 2018 , 8, 18-25	6.3	23
102	Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials. <i>Diabetologia</i> , 2020 , 63, 1128-1140	10.3	22
101	Cardiovascular disease guideline adherence and self-reported statin use in longstanding type 1 diabetes: results from the Canadian study of longevity in diabetes cohort. <i>Cardiovascular Diabetology</i> , 2016 , 15, 14	8.7	22
100	Prevalence of Insulin Pump Therapy and Its Association with Measures of Glycemic Control: Results from the Canadian Study of Longevity in Type 1 Diabetes. <i>Diabetes Technology and Therapeutics</i> , 2016 , 18, 298-307	8.1	22
99	Serum Uromodulin Predicts Less Coronary Artery Calcification and Diabetic Kidney Disease Over 12 Years in Adults With Type 1 Diabetes: The CACTI Study. <i>Diabetes Care</i> , 2019 , 42, 297-302	14.6	22
98	The Impact of Sotagliflozin on Renal Function, Albuminuria, Blood Pressure, and Hematocrit in Adults With Type 1 Diabetes. <i>Diabetes Care</i> , 2019 , 42, 1921-1929	14.6	21
97	Renal and Vascular Effects of Uric Acid Lowering in Normouricemic Patients With Uncomplicated Type 1 Diabetes. <i>Diabetes</i> , 2017 , 66, 1939-1949	0.9	20
96	Urinary ACE2 in healthy adults and patients with uncomplicated type 1 diabetes. <i>Canadian Journal of Physiology and Pharmacology</i> , 2014 , 92, 703-6	2.4	20
95	Acute Effect of Empagliflozin on Fractional Excretion of Sodium and eGFR in Youth With Type 2 Diabetes. <i>Diabetes Care</i> , 2018 , 41, e129-e130	14.6	20
94	Renal hyperfiltration and systemic blood pressure in patients with uncomplicated type 1 diabetes mellitus. <i>PLoS ONE</i> , 2013 , 8, e68908	3.7	18
93	Influence of sex on hyperfiltration in patients with uncomplicated type 1 diabetes. <i>American Journal of Physiology - Renal Physiology</i> , 2017 , 312, F599-F606	4.3	17
92	Perioperative Considerations for the Use of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes. <i>Anesthesia and Analgesia</i> , 2018 , 126, 699-704	3.9	16
91	Antihyperglycemic agents as novel natriuretic therapies in diabetic kidney disease. <i>American Journal of Physiology - Renal Physiology</i> , 2018 , 315, F1406-F1415	4.3	16
90	Relationship between serum inflammatory markers and vascular function in a cohort of adolescents with type 1 diabetes. <i>Cytokine</i> , 2017 , 99, 233-239	4	16
89	The urinary cytokine/chemokine signature of renal hyperfiltration in adolescents with type 1 diabetes. <i>PLoS ONE</i> , 2014 , 9, e111131	3.7	16
88	Clinical Implications of an Acute Dip in eGFR after SGLT2 Inhibitor Initiation. <i>Clinical Journal of the American Society of Nephrology: CJASN</i> , 2021 , 16, 1278-1280	6.9	16
87	Diabetes Care Disparities in Long-standing Type 1 Diabetes in Canada and the U.S.: A Cross-sectional Comparison. <i>Diabetes Care</i> , 2018 , 41, 88-95	14.6	16
86	A Big Win for Diabetic Kidney Disease: CREDENCE. <i>Cell Metabolism</i> , 2019 , 29, 1024-1027	24.6	15

85	The effect of sodium/glucose cotransporter 2 (SGLT2) inhibition on the urinary proteome. <i>PLoS ONE</i> , 2017 , 12, e0186910	3.7	15
84	Evolution of renal hyperfiltration and arterial stiffness from adolescence into early adulthood in type 1 diabetes. <i>Diabetes Care</i> , 2011 , 34, 1821-6	14.6	15
83	Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown?. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2019 , 104, 5406-5420	5.6	13
82	Molecular regulation of the renin-angiotensin system by sodium-glucose cotransporter 2 inhibition in type 1 diabetes mellitus. <i>Diabetologia</i> , 2019 , 62, 1090-1093	10.3	13
81	GLP-1R Agonists and Endothelial Dysfunction: More Than Just Glucose Lowering?. <i>Diabetes</i> , 2015 , 64, 2319-21	0.9	13
80	Effect of Uric Acid-Lowering Agents on Cardiovascular Outcome in Patients With Heart Failure: A Systematic Review and Meta-Analysis of Clinical Studies. <i>Angiology</i> , 2020 , 71, 315-323	2.1	13
79	The effect of aliskiren on urinary cytokine/chemokine responses to clamped hyperglycaemia in type 1 diabetes. <i>Diabetologia</i> , 2013 , 56, 2308-17	10.3	13
78	The impact of empagliflozin on kidney injury molecule-1: a subanalysis of the Effects of Empagliflozin on Cardiac Structure, Function, and Circulating Biomarkers in Patients with Type 2 Diabetes CardioLink-6 trial. <i>Nephrology Dialysis Transplantation</i> , 2020 , 35, 895-897	4.3	12
77	Plasma biomarkers improve prediction of diabetic kidney disease in adults with type 1 diabetes over a 12-year follow-up: CACTI study. <i>Nephrology Dialysis Transplantation</i> , 2018 , 33, 1189-1196	4.3	12
76	Association Between Plasma Uric Acid Levels and Cardiorenal Function in Adolescents With Type 1 Diabetes. <i>Diabetes Care</i> , 2016 , 39, 611-6	14.6	12
75	Sex differences in renal responses to hyperglycemia, L-arginine, and L-NMMA in humans with uncomplicated type 1 diabetes. <i>Diabetes Care</i> , 2013 , 36, 1290-6	14.6	12
74	Lower corneal nerve fibre length identifies diabetic neuropathy in older adults with diabetes: results from the Canadian Study of Longevity in Type 1 Diabetes. <i>Diabetologia</i> , 2017 , 60, 2529-2531	10.3	12
73	Relative Hypoxia and Early Diabetic Kidney Disease in Type 1 Diabetes. <i>Diabetes</i> , 2020 , 69, 2700-2708	0.9	12
72	Bone mineral density in patients with longstanding type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. <i>Journal of Diabetes and Its Complications</i> , 2019 , 33, 107324	3.2	12
71	What have we learned about renal protection from the cardiovascular outcome trials and observational analyses with SGLT2 inhibitors?. <i>Diabetes, Obesity and Metabolism,</i> 2020 , 22 Suppl 1, 55-6	8 ^{6.7}	11
70	Adiposity Impacts Intrarenal Hemodynamic Function in Adults With Long-standing Type 1 Diabetes With and Without Diabetic Nephropathy: Results From the Canadian Study of Longevity in Type 1 Diabetes. <i>Diabetes Care</i> , 2018 , 41, 831-839	14.6	11
69	Dulaglutide and renal protection in type 2 diabetes. Lancet Diabetes and Endocrinology, the, 2018, 6, 588	3- 59 .0	11
68	Fasting blood glucosea missing variable for GFR-estimation in type 1 diabetes?. <i>PLoS ONE</i> , 2014 , 9, e90	5 <u>3</u> 64	11

67	Impact of Cardio-Renal-Metabolic Comorbidities on Cardiovascular Outcomes and Mortality in Type 2 Diabetes Mellitus. <i>American Journal of Nephrology</i> , 2020 , 51, 74-82	4.6	11
66	Gradient of Risk and Associations With Cardiovascular Efficacy of Ertugliflozin by Measures of Kidney Function: Observations From VERTIS CV. <i>Circulation</i> , 2021 , 143, 602-605	16.7	11
65	Changes in Cardiovascular Biomarkers Associated With the Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Ertugliflozin in Patients With Chronic Kidney Disease and Type 2 Diabetes. <i>Diabetes Care</i> , 2021 , 44, e45-e47	14.6	11
64	Improvements in peripheral vascular function with vitamin D treatment in deficient adolescents with type 1 diabetes. <i>Pediatric Diabetes</i> , 2018 , 19, 457-463	3.6	10
63	Managing the Course of Kidney Disease in Adults With Type 2 Diabetes: From the Old to the New. <i>Canadian Journal of Diabetes</i> , 2018 , 42, 325-334	2.1	10
62	Sodium glucose cotransporter (SGLT)-2 inhibitors: Do we need them for glucose-lowering, for cardiorenal protection or both?. <i>Diabetes, Obesity and Metabolism</i> , 2019 , 21 Suppl 2, 24-33	6.7	9
61	Hemodynamic and neurochemical determinates of renal function in chronic heart failure. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2016 , 310, R167-75	3.2	9
60	Long-term hemodynamic and molecular effects persist after discontinued renin-angiotensin system blockade in patients with type 1 diabetes mellitus. <i>Kidney International</i> , 2013 , 84, 1246-53	9.9	9
59	The angiotensin II receptor type 2 polymorphism influences haemodynamic function and circulating RAS mediators in normotensive humans. <i>Nephrology Dialysis Transplantation</i> , 2010 , 25, 4093-6	4.3	9
58	The relationships between markers of tubular injury and intrarenal haemodynamic function in adults with and without type 1 diabetes: Results from the Canadian Study of Longevity in Type 1 Diabetes. <i>Diabetes, Obesity and Metabolism</i> , 2019 , 21, 575-583	6.7	9
57	A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. <i>Kidney International</i> , 2021 ,	9.9	9
56	Estimating GFR by Serum Creatinine, Cystatin C, and 🛽-Microglobulin in Older Adults: Results From the Canadian Study of Longevity in Type 1 Diabetes. <i>Kidney International Reports</i> , 2019 , 4, 786-796	4.1	8
55	Systemic hemodynamic function in humans with type 1 diabetes treated with protein kinase CI inhibition and renin-angiotensin system blockade: a pilot study. <i>Canadian Journal of Physiology and Pharmacology</i> , 2012 , 90, 113-21	2.4	8
54	Association between uric acid, renal haemodynamics and arterial stiffness over the natural history of type 1 diabetes. <i>Diabetes, Obesity and Metabolism</i> , 2019 , 21, 1388-1398	6.7	8
53	Retinopathy and RAAS Activation: Results From the Canadian Study of Longevity in Type 1 Diabetes. <i>Diabetes Care</i> , 2019 , 42, 273-280	14.6	8
52	Sodium-glucose Cotransporter 2 Inhibitors and Risk of Hyperkalemia in People with Type 2 diabetes: A Meta-analysis of Individual Participant Data from Randomized Controlled Trials <i>Circulation</i> , 2022 ,	16.7	8
51	Renal Hemodynamic Function and RAAS Activation Over the Natural History of Type 1 Diabetes. <i>American Journal of Kidney Diseases</i> , 2019 , 73, 786-796	7.4	7
50	Gender, clamped hyperglycemia and arterial stiffness in patients with uncomplicated type 1 diabetes mellitus. <i>Clinical and Experimental Hypertension</i> , 2014 , 36, 187-93	2.2	7

(2019-2020)

49	Sodium-Glucose Cotransporter-2 Inhibitors in Nephrology Practice: A Narrative Review. <i>Canadian Journal of Kidney Health and Disease</i> , 2020 , 7, 2054358120935701	2.3	6
48	The urinary inflammatory profile in gluten free diet-adherent adolescents with type 1 diabetes and celiac disease. <i>Journal of Diabetes and Its Complications</i> , 2016 , 30, 295-9	3.2	6
47	Ability of Cystatin C to detect changes in glomerular filtration rate after ACE inhibition in patients with uncomplicated type 1 diabetes. <i>Clinical and Experimental Hypertension</i> , 2012 , 34, 606-11	2.2	6
46	Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: from biomarkers to clinical outcomes in heart failure and diabetic kidney disease. <i>Metabolism: Clinical and Experimental</i> , 2022 , 126, 154918	12.7	6
45	Neurohormones, inflammatory mediators, and cardiovascular injury in the setting of heart failure. <i>Heart Failure Reviews</i> , 2020 , 25, 685-701	5	6
44	Kidney outcomes using a sustained \$\textit{00\%} decline in eGFR: A meta-analysis of SGLT2 inhibitor trials. <i>Clinical Cardiology</i> , 2021 , 44, 1139-1143	3.3	6
43	Exploring Patient Preferences for Adjunct-to-Insulin Therapy in Type 1 Diabetes. <i>Diabetes Care</i> , 2019 , 42, 1716-1723	14.6	5
42	Renal hyperfiltration is associated with glucose-dependent changes in fractional excretion of sodium in patients with uncomplicated type 1 diabetes. <i>Diabetes Care</i> , 2014 , 37, 2774-81	14.6	5
41	The effect of sex on humanin levels in healthy adults and patients with uncomplicated type 1 diabetes mellitus. <i>Canadian Journal of Physiology and Pharmacology</i> , 2015 , 93, 239-43	2.4	5
40	Prucalopride-associated acute tubular necrosis. World Journal of Clinical Cases, 2014, 2, 380-4	1.6	5
39	The Effect of Urine pH and Urinary Uric Acid Levels on the Development of Contrast Nephropathy. <i>Kidney and Blood Pressure Research</i> , 2020 , 45, 131-141	3.1	5
38	DAPA-CKD: The Beginning of a New Era in Renal Protection. <i>JACC Basic To Translational Science</i> , 2021 , 6, 74-77	8.7	5
37	Discoveries from the study of longstanding type 1 diabetes. <i>Diabetologia</i> , 2021 , 64, 1189-1200	10.3	4
36	Cardiorenal Protection in Diabetic Kidney Disease. Endocrinology and Metabolism, 2021, 36, 256-269	3.5	4
35	Ertugliflozin and Slope of Chronic eGFR: Prespecified Analyses from the Randomized VERTIS CV Trial. <i>Clinical Journal of the American Society of Nephrology: CJASN</i> , 2021 , 16, 1345-1354	6.9	4
34	Renal haemodynamic and protective effects of renoactive drugs in type 2 diabetes: Interaction with SGLT2 inhibitors. <i>Nephrology</i> , 2021 , 26, 377-390	2.2	4
33	Calcium channel blockade blunts the renal effects of acute nitric oxide synthase inhibition in healthy humans. <i>American Journal of Physiology - Renal Physiology</i> , 2017 , 312, F870-F878	4.3	3
32	Risk factors for diabetic kidney disease in adults with longstanding type 1 diabetes: results from the Canadian Study of Longevity in Diabetes. <i>Renal Failure</i> , 2019 , 41, 427-433	2.9	3

31	Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors <i>Med</i> , 2021 , 2, 1203-1230	31.7	3
30	Tubuloglomerular Feedback in Renal Glucosuria: Mimicking Long-term SGLT-2 Inhibitor Therapy. <i>Kidney Medicine</i> , 2020 , 2, 76-79	2.8	3
29	Cross-sectional associations between central and general adiposity with albuminuria: observations from 400,000 people in UK Biobank. <i>International Journal of Obesity</i> , 2020 , 44, 2256-2266	5.5	3
28	Renal haemodynamic response to sodium-glucose cotransporter-2 inhibition does not depend on protein intake: An analysis of three randomized controlled trials. <i>Diabetes, Obesity and Metabolism</i> , 2021 , 23, 1961-1967	6.7	3
27	Vasopressin associated with renal vascular resistance in adults with longstanding type 1 diabetes with and without diabetic kidney disease. <i>Journal of Diabetes and Its Complications</i> , 2021 , 35, 107807	3.2	3
26	Markers of Kidney Injury, Inflammation, and Fibrosis Associated With Ertugliflozin in Patients With CKD and Diabetes. <i>Kidney International Reports</i> , 2021 , 6, 2095-2104	4.1	3
25	Biomarkers of Inflammation, Fibrosis, and Acute Kidney Injury in Patients with Heart Failure with and without Left Ventricular Assist Device Implantation. <i>CardioRenal Medicine</i> , 2019 , 9, 108-116	2.8	2
24	Beta cell preservation in patients with type 1 diabetes. <i>Nature Medicine</i> , 2018 , 24, 1089-1090	50.5	2
23	Case - Reflex anuria: A rare complication of retrograde pyelography. <i>Canadian Urological Association Journal</i> , 2021 , 15, E380-E382	1.2	2
22	Relationships between inflammation, hemodynamic function and RAAS in longstanding type 1 diabetes and diabetic kidney disease. <i>Journal of Diabetes and Its Complications</i> , 2021 , 35, 107880	3.2	2
21	Effect of sodium-glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: a systematic review and meta-analysis. <i>International Urology and Nephrology</i> , 2021 , 1	2.3	2
20	Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes. <i>Diabetes, Obesity and Metabolism</i> , 2021 , 23, 2466-2475	6.7	2
19	Efficacy and safety of sotagliflozin in patients with type 2 diabetes and severe renal impairment. <i>Diabetes, Obesity and Metabolism,</i> 2021 , 23, 2632-2642	6.7	2
18	Cardiometabolic and Kidney Protection in Kidney Transplant Recipients with Diabetes: Mechanisms, Clinical Applications, and Summary of Clinical Trials. <i>Transplantation</i> , 2021 ,	1.8	2
17	Tubular injury in diabetic ketoacidosis: Results from the diabetic kidney alarm study. <i>Pediatric Diabetes</i> , 2021 , 22, 1031-1039	3.6	2
16	The effect of sex on endothelial function responses to clamped hyperglycemia in type 1 diabetes. <i>Hypertension Research</i> , 2014 , 37, 220-4	4.7	1
15	Sodium-glucose cotransporter 2 inhibition in non-diabetic kidney disease. <i>Current Opinion in Nephrology and Hypertension</i> , 2021 , 30, 474-481	3.5	1
14	Transforming the Care of Patients with Diabetic Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2021 , 16, 1590-1600	6.9	1

LIST OF PUBLICATIONS

13	Kidney Effects of Empagliflozin in People with Type 1 Diabetes. <i>Clinical Journal of the American Society of Nephrology: CJASN</i> , 2021 , 16, 1715-1719	6.9	1
12	Allopurinol and Renal Outcomes in Adults With and Without Type 2 Diabetes: A Retrospective, Population-Based Cohort Study and Propensity Score Analysis. <i>Canadian Journal of Diabetes</i> , 2021 , 45, 641-649.e4	2.1	1
11	Effect of dapagliflozin on kidney and cardiovascular outcomes by baseline KDIGO risk categories: a post hoc analysis of the DAPA-CKD trial <i>Diabetologia</i> , 2022 , 1	10.3	1
10	The association between physical activity time and neuropathy in longstanding type 1 diabetes: A cross-sectional analysis of the Canadian study of longevity in type 1 diabetes <i>Journal of Diabetes and Its Complications</i> , 2022 , 36, 108134	3.2	Ο
9	Evaluation of the Pharmacokinetics and Exposure-Response Relationship of Dapagliflozin in Patients without Diabetes and with Chronic Kidney Disease. <i>Clinical Pharmacokinetics</i> , 2021 , 60, 517-525	6.2	0
8	Potential Use of SGLT-2 Inhibitors in Obstructive Sleep Apnea: A new treatment on the horizon <i>Sleep and Breathing</i> , 2022 , 1	3.1	O
7	A Unique Multi- and Interdisciplinary Cardiology-Renal-Endocrine Clinic: A Description and Assessment of Outcomes <i>Canadian Journal of Kidney Health and Disease</i> , 2022 , 9, 20543581221081207	, 2.3	0
6	Response to Comment on Lovshin et al. Dipeptidyl Peptidase 4 Inhibition Stimulates Distal Tubular Natriuresis and Increases in Circulating SDF-1[In Patients With Type 2 Diabetes. Diabetes Care 2017;40:1073-1081. <i>Diabetes Care</i> , 2017 , 40, e159-e160	14.6	
5	The authors reply. Kidney International, 2020, 97, 213-214	9.9	
4	In Response. Anesthesia and Analgesia, 2018 , 126, 1792-1793	3.9	
3	In Response. Anesthesia and Analgesia, 2018, 127, 307-308	3.9	
2	SGLT2 Inhibition in Patients With Type 2 Diabetes Mellitus Post-Nephrectomy: A Single-Center Case Series <i>Canadian Journal of Kidney Health and Disease</i> , 2021 , 8, 20543581211065528	2.3	
1	Ertugliflozin, renoprotection and potential confounding by muscle wasting. Reply to Groothof D, Post A, Gans ROB et al [letter] <i>Diabetologia</i> , 2022 , 65, 908	10.3	