Diana Imhof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9174854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Gαi/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chemical Biology, 2022, 17, 463-473.	1.6	7
2	Molecular Insights and Functional Consequences of the Interaction of Heme with Activated Protein C. Antioxidants and Redox Signaling, 2021, 34, 32-48.	2.5	14
3	Structural Insights into the Interaction of Heme with Protein Tyrosine Kinase JAK2**. ChemBioChem, 2021, 22, 861-864.	1.3	5
4	Linking Labile Heme with Thrombosis. Journal of Clinical Medicine, 2021, 10, 427.	1.0	23
5	Revisiting the interaction of heme with hemopexin. Biological Chemistry, 2021, 402, 675-691.	1.2	13
6	Strategies towards Targeting Gαi/s Proteins: Scanning of Proteinâ€Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem, 2021, 16, 1697-1716.	1.6	10
7	Linking COVID-19 and Heme-Driven Pathophysiologies: A Combined Computational–Experimental Approach. Biomolecules, 2021, 11, 644.	1.8	16
8	NMR-Based Structural Characterization of a Two-Disulfide-Bonded Analogue of the FXIIIa Inhibitor Tridegin: New Insights into Structure–Activity Relationships. International Journal of Molecular Sciences, 2021, 22, 880.	1.8	4
9	LC-Trapped Ion Mobility Spectrometry-TOF MS Differentiation of 2- and 3-Disulfide-Bonded Isomers of the μ-Conotoxin PIIIA. Analytical Chemistry, 2020, 92, 10920-10924.	3.2	9
10	Editorial: Chemical Design and Biomedical Applications of Disulfide-rich Peptides: Challenges and Opportunities. Frontiers in Chemistry, 2020, 8, 586377.	1.8	4
11	Heme Determination and Quantification Methods and Their Suitability for Practical Applications and Everyday Use. Analytical Chemistry, 2020, 92, 9429-9440.	3.2	26
12	A Computational Approach for Mapping Heme Biology in the Context of Hemolytic Disorders. Frontiers in Bioengineering and Biotechnology, 2020, 8, 74.	2.0	16
13	HeMoQuest: a webserver for qualitative prediction of transient heme binding to protein motifs. BMC Bioinformatics, 2020, 21, 124.	1.2	31
14	Inhibitors of blood coagulation factor XIII. Analytical Biochemistry, 2020, 605, 113708.	1.1	16
15	High-affinity binding and catalytic activity of His/Tyr-based sequences: Extending heme-regulatory motifs beyond CP. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129603.	1.1	20
16	Distinct 3-disulfide-bonded isomers of tridegin differentially inhibit coagulation factor XIIIa: The influence of structural stability on bioactivity. European Journal of Medicinal Chemistry, 2020, 201, 112474.	2.6	4
17	Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Scientific Reports, 2019, 9, 11324.	1.6	52
18	NMR experiments on the transient interaction of the intrinsically disordered N-terminal peptide of cystathionine-Î ² -synthase with heme. Journal of Magnetic Resonance, 2019, 308, 106561.	1.2	4

#	Article	IF	CITATIONS
19	Effect of Conformational Diversity on the Bioactivity of Âμ-Conotoxin PIIIA Disulfide Isomers. Marine Drugs, 2019, 17, 390.	2.2	10
20	1H, 13C, and 15N resonance assignments of the cytokine interleukin-36β isoform-2. Biomolecular NMR Assignments, 2019, 13, 155-161.	0.4	2
21	Coagulation Factor XIIIa Inhibitor Tridegin: On the Role of Disulfide Bonds for Folding, Stability, and Function. Journal of Medicinal Chemistry, 2019, 62, 3513-3523.	2.9	7
22	Modulation of KV10.1 Potassium Channel Function by Intracellular Heme. Biophysical Journal, 2019, 116, 15a.	0.2	0
23	Structural insights into heme binding to IL-36α proinflammatory cytokine. Scientific Reports, 2019, 9, 16893.	1.6	29
24	The Plasma Factor XIII Heterotetrameric Complex Structure: Unexpected Unequal Pairing within a Symmetric Complex. Biomolecules, 2019, 9, 765.	1.8	13
25	The molecular basis of transient heme-protein interactions: analysis, concept and implementation. Bioscience Reports, 2019, 39, .	1.1	42
26	HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nature Communications, 2018, 9, 764.	5.8	58
27	Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-β-synthase. Scientific Reports, 2018, 8, 2474.	1.6	19
28	Conformational μ-Conotoxin PIIIA Isomers Revisited: Impact of Cysteine Pairing on Disulfide-Bond Assignment and Structure Elucidation. Analytical Chemistry, 2018, 90, 3321-3327.	3.2	27
29	Lack of beta-arrestin signaling in the absence of active G proteins. Nature Communications, 2018, 9, 341.	5.8	297
30	Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC–MS analysis. AMB Express, 2018, 8, 66.	1.4	8
31	Biofunctionalization of Ceramic Implant Surfaces to Improve their Bone Ingrowth Behavior. Materials Science Forum, 2018, 941, 2483-2488.	0.3	5
32	Analyzing Residue Surface Proximity to Interpret Molecular Dynamics. Computer Graphics Forum, 2018, 37, 379-390.	1.8	4
33	Insights into the Folding of Disulfide-Rich μ-Conotoxins. ACS Omega, 2018, 3, 12330-12340.	1.6	19
34	Synthesis and Structure Determination of µ-Conotoxin PIIIA Isomers with Different Disulfide Connectivities. Journal of Visualized Experiments, 2018, , .	0.2	7
35	Deciphering Specificity Determinants for FR900359â€Đerived G _q î± Inhibitors Based on Computational and Structure–Activity Studies. ChemMedChem, 2018, 13, 1634-1643.	1.6	29
36	Insights into mechanism and functional consequences of heme binding to hemolysin-activating lysine acyltransferase HlyC from Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1964-1972.	1.1	18

#	Article	IF	CITATIONS
37	Subtype-specific block of voltage-gated K+ channels by μ-conopeptides. Biochemical and Biophysical Research Communications, 2017, 482, 1135-1140.	1.0	18
38	A Tough Nut to Crack: Intracellular Detection and Quantification of Heme in Malaria Parasites by a Genetically Encoded Protein Sensor. ChemBioChem, 2017, 18, 1561-1564.	1.3	3
39	Synthesis and Evaluation of Amyloid β Derived and Amyloid β Independent Enhancers of the Peroxidase-like Activity of Heme. Journal of Medicinal Chemistry, 2017, 60, 373-385.	2.9	12
40	Structural and functional diversity of transient heme binding to bacterial proteins. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 683-697.	1.1	28
41	CO-independent modification of K + channels by tricarbonyldichlororuthenium(II) dimer (CORM-2). European Journal of Pharmacology, 2017, 815, 33-41.	1.7	42
42	New insights into the mechanism of nickel superoxide degradation from studies of model peptides. Scientific Reports, 2017, 7, 17194.	1.6	16
43	Encapsulation of the HDACi Ex527 into Liposomes and Polymer-Based Particles. Methods in Molecular Biology, 2017, 1510, 387-398.	0.4	0
44	C-Terminal Alpha-1 Antitrypsin Peptide: A New Sepsis Biomarker with Immunomodulatory Function. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	27
45	Identification of inhibitors of the transmembrane protease FlaK of <i>Methanococcus maripaludis</i> . MicrobiologyOpen, 2016, 5, 637-646.	1.2	4
46	Studies on the X-Ray and Solution Structure of FeoB from Escherichia coli BL21. Biophysical Journal, 2016, 110, 2642-2650.	0.2	13
47	Molecular interaction of δ-conopeptide EVIA with voltage-gated Na+ channels. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2053-2063.	1.1	10
48	1H, 13C, and 15N resonance assignments for the pro-inflammatory cytokine interleukin-36α. Biomolecular NMR Assignments, 2016, 10, 329-333.	0.4	4
49	Heme interacts with histidine- and tyrosine-based protein motifs and inhibits enzymatic activity of chloramphenicol acetyltransferase from Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1343-1353.	1.1	30
50	Propylene carbonate quantification by its derivative 3,5-diacetyl-1,4-dihydro-2,6-lutidine. Talanta, 2016, 151, 75-82.	2.9	5
51	Role of the Chemical Environment beyond the Coordination Site: Structural Insight into Fe ^{III} Protoporphyrin Binding to Cysteineâ€Based Hemeâ€Regulatory Protein Motifs. ChemBioChem, 2015, 16, 2216-2224.	1.3	32
52	Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM). Journal of Inorganic Biochemistry, 2015, 148, 49-56.	1.5	24
53	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	5.8	282
54	Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids, 2015, 47, 1283-1299.	1.2	16

DIANA IMHOF

#	Article	IF	CITATIONS
55	Novel Insights into Structure and Function of Factor XIIIa-Inhibitor Tridegin. Journal of Medicinal Chemistry, 2014, 57, 10355-10365.	2.9	18
56	Novel Insights Into Appropriate Encapsulation Methods for Bioactive Compounds Into Polymers: A Study With Peptides and HDAC Inhibitors. Macromolecular Bioscience, 2014, 14, 69-80.	2.1	10
57	Application of Roomâ€Temperature Aprotic and Protic Ionic Liquids for Oxidative Folding of Cysteineâ€Rich Peptides. ChemBioChem, 2014, 15, 2754-2765.	1.3	22
58	Total synthesis and characterization of the bilirubin oxidation product (Z)-2-(4-ethenyl-3-methyl-5-oxo-1,5-dihydro-2H-pyrrol-2-ylidene)ethanamide (Z-BOX B). Tetrahedron Letters, 2014, 55, 6526-6529.	0.7	12
59	A Cell-Permeable Inhibitor to Trap Gαq Proteins in the Empty Pocket Conformation. Chemistry and Biology, 2014, 21, 890-902.	6.2	47
60	lonic liquids as reaction media for oxidative folding and native chemical ligation of cysteine-containing peptides. Journal of Molecular Liquids, 2014, 192, 67-70.	2.3	16
61	Regulatory Fe ^{II/III} Heme: The Reconstruction of a Molecule's Biography. ChemBioChem, 2014, 15, 2024-2035.	1.3	55
62	lonic liquid 1-ethyl-3-methylimidazolium acetate: an attractive solvent for native chemical ligation of peptides. Tetrahedron Letters, 2014, 55, 3658-3662.	0.7	10
63	Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide Gly-Phe-Asp-GlyOH in alkaline solution. Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 96-103.	1.4	7
64	On the Nature of Interactions between Ionic Liquids and Small Aminoâ€Acidâ€Based Biomolecules. ChemPhysChem, 2013, 14, 4044-4064.	1.0	60
65	Analysis of Fe(III) Heme Binding to Cysteine-Containing Heme-Regulatory Motifs in Proteins. ACS Chemical Biology, 2013, 8, 1785-1793.	1.6	65
66	lsomerization and epimerization of the aspartyl tetrapeptide <scp>A</scp> laâ€ <scp>P</scp> heâ€ <scp>A</scp> spâ€ <scp>G</scp> ly <scp>OH</scp> at p <scp>H</scp> 10â€ <scp>CE</scp> study. Electrophoresis, 2013, 34, 2666-2673.	E" A. 3	3
67	Degradation Kinetics of an Aspartyl-Tripeptide-Derived Diketopiperazine under Forced Conditions. Journal of Pharmaceutical Sciences, 2012, 101, 4178-4190.	1.6	9
68	Ionic Liquid Applications in Peptide Chemistry: Synthesis, Purification and Analytical Characterization Processes. Molecules, 2012, 17, 4158-4185.	1.7	48
69	Structurally Diverse μ onotoxin PIIIA Isomers Block Sodium Channel Na _V 1.4. Angewandte Chemie - International Edition, 2012, 51, 4058-4061.	7.2	51
70	Synthesis and Functional Characterization of Tridegin and Its Analogues: Inhibitors and Substrates of Factor XIIIa. ChemMedChem, 2012, 7, 326-333.	1.6	23
71	Molecular determinants for the subtype specificity of μ-conotoxin SIIIA targeting neuronal voltage-gated sodium channels. Neuropharmacology, 2011, 61, 105-111.	2.0	32
72	Revealing the Position of the Substrate in Nickel Superoxide Dismutase: A Model Study. Angewandte Chemie - International Edition, 2011, 50, 2946-2950.	7.2	22

#	Article	IF	CITATIONS
73	Determination of Heminâ€Binding Characteristics of Proteins by a Combinatorial Peptide Library Approach. ChemBioChem, 2011, 12, 2846-2855.	1.3	48
74	Synthetic Strategies to a Backbone-Side Chain Cyclic SHP-1 N-SH2 Ligand Containing N-Functionalized Alkyl Phosphotyrosine. Protein and Peptide Letters, 2010, 17, 809-816.	0.4	0
75	Development of a Functional <i>cis</i> â€Prolyl Bond Biomimetic and Mechanistic Implications for Nickel Superoxide Dismutase. Chemistry - A European Journal, 2010, 16, 7572-7578.	1.7	38
76	Modulation of SHPâ€1 phosphatase activity by monovalent and bivalent SH2 phosphopeptide ligands. Biopolymers, 2010, 93, 102-112.	1.2	1
77	Activation by Tyrosine Phosphorylation as a Prerequisite for Protein Kinase Cζ to Mediate Epidermal Growth Factor Receptor Signaling to ERK. Molecular Cancer Research, 2010, 8, 783-797.	1.5	10
78	An unusual peptide from Conus villepinii: Synthesis, solution structure, and cardioactivity. Peptides, 2010, 31, 1292-1300.	1.2	18
79	Cell-specific RNA interference by peptide-inhibited-peptidase-activated siRNAs. Journal of Rnai and Gene Silencing, 2010, 6, 422-30.	1.2	6
80	New Insight into the Mode of Action of Nickel Superoxide Dismutase by Investigating Metallopeptide Substrate Models. Chemistry - A European Journal, 2009, 15, 517-523.	1.7	40
81	Dextranâ€based coating system for the immobilization of cell adhesion promoting molecules on titanium surfaces. Materialwissenschaft Und Werkstofftechnik, 2009, 40, 853-860.	0.5	4
82	A room temperature ionic liquid as convenient solvent for the oxidative folding of conopeptides. Journal of Peptide Science, 2009, 15, 72-77.	0.8	32
83	Eyes Absent Proteins: Characterization of Substrate Specificity and Phosphatase Activity of Mutants Associated with Branchial, Otic and Renal Anomalies. ChemBioChem, 2008, 9, 2285-2294.	1.3	5
84	Development of a capillary electrophoresisâ€based assay of sirtuin enzymes. Electrophoresis, 2008, 29, 3717-3723.	1.3	20
85	Monitoring phosphatase reactions of multiple phosphorylated substrates by reversed-phase HPLC. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 853, 204-213.	1.2	3
86	Protein kinase Cε may act as EGF-inducible scaffold protein for phospholipase Cγ1. Cellular Signalling, 2007, 19, 1830-1843.	1.7	8
87	Detection of new amino acid sequences of alamethicins F30 by nonaqueous capillary electrophoresis–mass spectrometry. Journal of Peptide Science, 2006, 12, 279-290.	0.8	31
88	Phosphopeptide Ligands of the SHP-1 N-SH2 Domain: Effects on Binding and Stimulation of Phosphatase Activity. ChemMedChem, 2006, 1, 869-877.	1.6	3
89	Sequence Specificity of SHP-1 and SHP-2 Src Homology 2 Domains. Journal of Biological Chemistry, 2006, 281, 20271-20282.	1.6	59
90	Synthesis of linear and cyclic phosphopeptides as ligands for theN-terminal SH2-domain of protein tyrosine phosphatase SHP-1. Journal of Peptide Science, 2005, 11, 390-400.	0.8	15

#	Article	IF	CITATIONS
91	Design and Biological Evaluation of Linear and Cyclic Phosphopeptide Ligands of the N-Terminal SH2 Domain of Protein Tyrosine Phosphatase SHP-1. Journal of Medicinal Chemistry, 2005, 48, 1528-1539.	2.9	7
92	Development of Conformationally Restricted Analogues of Bradykinin and Somatostatin Using Constrained Amino Acids and Different Types of Cyclization. Current Medicinal Chemistry, 2004, 11, 2823-2844.	1.2	33
93	Effective Dephosphorylation of Src Substrates by SHP-1. Journal of Biological Chemistry, 2004, 279, 11375-11383.	1.6	84
94	Circular dichroism studies of ampullosporin-A analogues. Journal of Peptide Science, 2003, 9, 714-728.	0.8	11
95	Synthesis and Biological Evaluation of Analogues of the Peptaibol Ampullosporin A. Journal of Medicinal Chemistry, 2002, 45, 2781-2787.	2.9	28
96	Synthesis of differentially protectedN-acylated reduced pseudodipeptides as building units for backbone cyclic peptides. , 2000, 6, 130-138.		10
97	Study on the cyclization tendency of backbone cyclic tetrapeptides. Chemical Biology and Drug Design, 2000, 56, 337-345.	1.2	13