
Fumitaka Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9174623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GRP78 Antibodies Are Associated With Blood-Brain Barrier Breakdown in Anti–Myelin Oligodendrocyte Glycoprotein Antibody–Associated Disorder. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	15
2	New BBB Model Reveals That IL-6 Blockade Suppressed the BBB Disorder, Preventing Onset of NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	40
3	Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 573775.	4.1	88
4	Contribution of brain pericytes in blood–brain barrier formation and maintenance: a transcriptomic study of cocultured human endothelial cells derived from hematopoietic stem cells. Fluids and Barriers of the CNS, 2020, 17, 48.	5.0	32
5	GRP78 antibodies are associated with blood–brain barrier breakdown in paraneoplastic cerebellar degeneration in Lambertâ€Eaton myasthenic syndrome. Clinical and Experimental Neuroimmunology, 2020, 11, 88-89.	1.0	0
6	GRP 78 antibodies are associated with clinical phenotype in neuromyelitis optica. Annals of Clinical and Translational Neurology, 2019, 6, 2079-2087.	3.7	18
7	GRP78 antibodies damage the blood–brain barrier and relate to cerebellar degeneration in Lambert-Eaton myasthenic syndrome. Brain, 2019, 142, 2253-2264.	7.6	25
8	Glucose-Regulated Protein 78 Autoantibody Associates with Blood-brain Barrier Disruption in Neuromyelitis Optica. Yamaguchi Medical Journal, 2019, 68, 23-29.	0.1	0
9	Blood–brain barrier dysfunction in immuno-mediated neurological diseases. Immunological Medicine, 2018, 41, 120-128.	2.6	52
10	A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids and Barriers of the CNS, 2018, 15, 23.	5.0	235
11	Identification of galectin-3 as a possible antibody target for secondary progressive multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 382-394.	3.0	30
12	Effects of neuromyelitis optica–lgG at the blood–brain barrier in vitro. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e311.	6.0	153
13	Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. Science Translational Medicine, 2017, 9, .	12.4	110
14	ldentification of endothelial cellâ€specific autoantibody target to manipulate blood–brain barrier permeability from neuromyelitis optica. Clinical and Experimental Neuroimmunology, 2017, 8, 281-282.	1.0	0
15	GRP78 autoantibodies initiate the breakdown of the blood-brain barrier in neuromyelitis optica. Oncotarget, 2017, 8, 106175-106176.	1.8	2
16	Markedly Increased IP-10 Production by Blood-Brain Barrier in Neuromyelitis Optica. PLoS ONE, 2015, 10, e0122000.	2.5	25
17	CSF cytokine profile distinguishes multifocal motor neuropathy from progressive muscular atrophy. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e138.	6.0	38
18	Autocrine MMP-2/9 secretion increases the BBB permeability in neuromyelitis optica. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 419-430.	1.9	47

FUMITAKA SHIMIZU

#	Article	IF	CITATIONS
19	NMO sera down-regulate AQP4 in human astrocyte and induce cytotoxicity independent of complement. Journal of the Neurological Sciences, 2013, 331, 136-144.	0.6	39
20	Establishment and characterization of spinal cord microvascular endothelial cell lines. Clinical and Experimental Neuroimmunology, 2013, 4, 326-338.	1.0	20
21	Sera from neuromyelitis optica patients disrupt the blood–brain barrier. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 288-297.	1.9	87
22	Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. Journal of Cellular Physiology, 2010, 225, 519-528.	4.1	109
23	Novel heterozygous variants of <scp> <i>SLC12A6</i> </scp> in Japanese families with <scp>Charcot–Marie–Tooth</scp> disease. Annals of Clinical and Translational Neurology, 0, , .	3.7	1