Safacan Kolemen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9174278/publications.pdf

Version: 2024-02-01

35 3,733 24 37 papers citations h-index g-index

40 40 40 4431 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Molecular logic gates: the past, present and future. Chemical Society Reviews, 2018, 47, 2228-2248.	18.7	468
2	Activatable Photosensitizers: Agents for Selective Photodynamic Therapy. Advanced Functional Materials, 2017, 27, 1604053.	7.8	395
3	Selective Manipulation of ICT and PET Processes in Styryl-Bodipy Derivatives: Applications in Molecular Logic and Fluorescence Sensing of Metal Ions. Journal of the American Chemical Society, 2010, 132, 8029-8036.	6.6	379
4	Designing Excited States: Theoryâ€Guided Access to Efficient Photosensitizers for Photodynamic Action. Angewandte Chemie - International Edition, 2011, 50, 11937-11941.	7.2	340
5	Reaction-based BODIPY probes for selective bio-imaging. Coordination Chemistry Reviews, 2018, 354, 121-134.	9.5	263
6	Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. Chemical Science, 2011, 2, 949.	3.7	259
7	Tetrastyryl-Bodipy Dyes: Convenient Synthesis and Characterization of Elusive Near IR Fluorophores. Organic Letters, 2009, 11, 4644-4647.	2.4	212
8	Solid-State Dye-Sensitized Solar Cells Using Red and Near-IR Absorbing Bodipy Sensitizers. Organic Letters, 2010, 12, 3812-3815.	2.4	177
9	Remoteâ€Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxideâ€Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 3606-3610.	7.2	170
10	Intracellular Modulation of Excitedâ€State Dynamics in a Chromophore Dyad: Differential Enhancement of Photocytotoxicity Targeting Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 5340-5344.	7.2	140
11	Chromogenic and Fluorogenic Sensing of Biological Thiols in Aqueous Solutions Using BODIPY-Based Reagents. Organic Letters, 2013, 15, 216-219.	2.4	139
12	Heavy Atom Free Singlet Oxygen Generation: Doubly Substituted Configurations Dominate S ₁ States of Bis-BODIPYs. Journal of Organic Chemistry, 2012, 77, 4516-4527.	1.7	117
13	Designing an Intracellular Fluorescent Probe for Glutathione: TwoÂModulation Sites for Selective Signal Transduction. Organic Letters, 2014, 16, 3260-3263.	2.4	97
14	Atropisomeric Dyes: Axial Chirality in Orthogonal BODIPY Oligomers. Organic Letters, 2014, 16, 660-663.	2.4	51
15	Remoteâ€Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxideâ€Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy. Angewandte Chemie, 2016, 128, 3670-3674.	1.6	47
16	Synthesis and dye sensitized solar cell applications of Bodipy derivatives with bis-dimethylfluorenyl amine donor groups. New Journal of Chemistry, 2015, 39, 4086-4092.	1.4	38
17	Designing BODIPY-based probes for fluorescence imaging of \hat{l}^2 -amyloid plaques. RSC Advances, 2014, 4, 51032-51037.	1.7	37
18	Mitochondriaâ€Targeting Selenopheneâ€Modified BODIPYâ€Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem, 2019, 14, 1879-1886.	1.6	35

#	Article	IF	Citations
19	Recent Advances in Cyanine-Based Phototherapy Agents. Frontiers in Chemistry, 2021, 9, 707876.	1.8	35
20	Design and characterization of Bodipy derivatives for bulk heterojunction solar cells. Tetrahedron, 2014, 70, 6229-6234.	1.0	32
21	Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chemical Biology, 2018, 13, 1844-1852.	1.6	29
22	Thioether Coordination Chemistry for Molecular Imaging of Copper in Biological Systems. Israel Journal of Chemistry, 2016, 56, 724-737.	1.0	27
23	Generation of Singlet Oxygen by Persistent Luminescent Nanoparticle–Photosensitizer Conjugates: A Proof of Principle for Photodynamic Therapy without Light. ChemPhotoChem, 2017, 1, 183-187.	1.5	22
24	A leucine aminopeptidase activatable photosensitizer for cancer cell selective photodynamic therapy action. Dyes and Pigments, 2021, 195, 109735.	2.0	22
25	A responsive AIE-active fluorescent probe for visualization of acetylcholinesterase activity <i>in vitro</i> and <i>in vivo</i> . Materials Chemistry Frontiers, 2022, 6, 1515-1521.	3.2	19
26	Resorufin Enters the Photodynamic Therapy Arena: A Monoamine Oxidase Activatable Agent for Selective Cytotoxicity. ACS Medicinal Chemistry Letters, 2020, 11, 2491-2496.	1.3	16
27	A hydrogen peroxide responsive resorufin-based phototheranostic agent for selective treatment of cancer cells. Dyes and Pigments, 2021, 193, 109499.	2.0	14
28	Singlet oxygen probes: Diversity in signal generation mechanisms yields a larger color palette. Coordination Chemistry Reviews, 2021, 429, 213641.	9.5	12
29	A facile synthesis of mesoporous graphitic carbon nitride supported palladium nanoparticles as highly effective and reusable catalysts for Stille coupling reactions under mild conditions. New Journal of Chemistry, 2020, 44, 6714-6723.	1.4	11
30	An easily available lysosomal-targeted ratiometric fluorescent probe with aggregation induced emission characteristics for hydrogen polysulfide visualization in acute ulcerative colitis. Materials Chemistry Frontiers, 2021, 5, 7638-7644.	3.2	7
31	Dual laser activatable brominated hemicyanine as a highly efficient and photostable multimodal phototherapy agent. Journal of Photochemistry and Photobiology B: Biology, 2021, 217, 112171.	1.7	7
32	Development of a cysteine responsive chlorinated hemicyanine for image-guided dual phototherapy. Bioorganic Chemistry, 2022, 122, 105725.	2.0	5
33	Activity-Based Photosensitizers with Optimized Triplet State Characteristics Toward Cancer Cell Selective and Image Guided Photodynamic Therapy. ACS Applied Bio Materials, 2022, 5, 2754-2767.	2.3	5
34	Balanced Intersystem Crossing in Iodinated Silicon-Fluoresceins Allows New Class of Red Shifted Theranostic Agents. ACS Medicinal Chemistry Letters, 2021, 12, 752-757.	1.3	3
35	Organo-soluble dendritic zinc phthalocyanine: photoluminescence and fluorescence properties. Inorganic and Nano-Metal Chemistry, 0, , 1-7.	0.9	0