Roberto Sartori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/917426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Feed Intake Increases Liver Blood Flow and Metabolism of Progesterone and Estradiol-17β in Dairy Cattle. Journal of Dairy Science, 2002, 85, 2831-2842.	1.4	449
2	Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology, 2001, 56, 307-314.	0.9	345
3	Changes in reproductive physiology of lactating dairy cows due to elevated steroid metabolism. Theriogenology, 2006, 65, 17-29.	0.9	333
4	Comparison of Ovarian Function and Circulating Steroids in Estrous Cycles of Holstein Heifers and Lactating Cows. Journal of Dairy Science, 2004, 87, 905-920.	1.4	322
5	Fertilization and Early Embryonic Development in Heifers and Lactating Cows in Summer and Lactating and Dry Cows in Winter. Journal of Dairy Science, 2002, 85, 2803-2812.	1.4	317
6	Follicular Deviation and Acquisition of Ovulatory Capacity in Bovine Follicles1. Biology of Reproduction, 2001, 65, 1403-1409.	1.2	305
7	Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology, 2016, 86, 239-253.	0.9	291
8	Physiological classification of anovulatory conditions in cattle. Theriogenology, 2002, 57, 21-52.	0.9	247
9	Ovarian Structures and Circulating Steroids in Heifers and Lactating Cows in Summer and Lactating and Dry Cows in Winter. Journal of Dairy Science, 2002, 85, 2813-2822.	1.4	145
10	A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Animal Genetics, 2011, 42, 89-92.	0.6	132
11	Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reproduction, Fertility and Development, 2010, 22, 151.	0.1	112
12	Single embryo and oocyte lipid fingerprinting by mass spectrometry. Journal of Lipid Research, 2010, 51, 1218-1227.	2.0	109
13	Mechanisms that Prevent and Produce Double Ovulations in Dairy Cattle. Journal of Dairy Science, 2000, 83, 2998-3007.	1.4	96
14	Association of changes among body condition score during the transition period with NEFA and BHBA concentrations, milk production, fertility, and health of Holstein cows. Theriogenology, 2017, 104, 30-36.	0.9	92
15	Managing the dominant follicle in lactating dairy cows. Theriogenology, 2011, 76, 1568-1582.	0.9	90
16	Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology, 2010, 74, 1521-1530.	0.9	86
17	Reproductive Hormones and Follicular Growth During Development of One or Multiple Dominant Follicles in Cattle1. Biology of Reproduction, 2005, 72, 788-795.	1.2	79
18	Metabolic and endocrine differences between Bos taurus and Bos indicus females that impact the interaction of nutrition with reproduction. Theriogenology, 2016, 86, 32-40.	0.9	75

#	Article	IF	CITATIONS
19	Reproductive cycles in Bos indicus cattle. Animal Reproduction Science, 2011, 124, 244-250.	O.5	72
20	Nutritional management of the donor cow. Theriogenology, 2008, 69, 88-97.	0.9	71
21	Effect of treatment with human chorionic gonadotropin on day 5 after timed artificial insemination on fertility of lactating dairy cows. Journal of Dairy Science, 2013, 96, 2873-2882.	1.4	66
22	Nanoscale Differences in the Shape and Size of X and Y Chromosome-Bearing Bovine Sperm Heads Assessed by Atomic Force Microscopy. PLoS ONE, 2013, 8, e59387.	1.1	50
23	Comparison of artificial insemination versus embryo transfer in lactating dairy cows. Theriogenology, 2006, 65, 1311-1321.	0.9	46
24	Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. Journal of Thermal Biology, 2017, 66, 68-80.	1.1	46
25	A GnRH/LH Surge Without Subsequent Progesterone Exposure Can Induce Development of Follicular Cysts. Journal of Dairy Science, 2002, 85, 43-50.	1.4	44
26	Lack of complete regression of the Day 5 corpus luteum after one or two doses of PGF2α in nonlactating Holstein cows. Theriogenology, 2014, 81, 389-395.	0.9	41
27	Effect of Synchronization Protocols on Follicular Development and Estradiol and Progesterone Concentrations of Dairy Heifers. Journal of Dairy Science, 2008, 91, 3045-3056.	1.4	40
28	Effects of supplemental progesterone after artificial insemination on expression of interferon-stimulated genes and fertility in dairy cows. Journal of Dairy Science, 2014, 97, 4907-4921.	1.4	39
29	Assessment of a Commercially Available Early Conception Factor (ECF) Test for Determining Pregnancy Status of Dairy Cattle. Journal of Dairy Science, 2001, 84, 1884-1889.	1.4	37
30	Progesterone supplementation after ovulation: Effects on corpus luteum function and on fertility of dairy cows subjected to AI or ET. Theriogenology, 2015, 84, 1215-1224.	0.9	36
31	Effect of injectable vitamin E on incidence of retained fetal membranes and reproductive performance of dairy cows. Journal of Dairy Science, 2015, 98, 2437-2449.	1.4	31
32	Increasing estradiol benzoate, pretreatment with gonadotropin-releasing hormone, and impediments for successful estradiol-based fixed-time artificial insemination protocols in dairy cattle. Journal of Dairy Science, 2015, 98, 3826-3839.	1.4	31
33	Factors That Optimize Reproductive Efficiency in Dairy Herds with an Emphasis on Timed Artificial Insemination Programs. Animals, 2021, 11, 301.	1.0	28
34	Effects of treatment with human chorionic gonadotrophin or intravaginal progesterone-releasing device after AI on circulating progesterone concentrations in lactating dairy cows. Reproduction, Fertility and Development, 2013, 25, 818.	0.1	26
35	Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2Ĩ±â€. Biology of Reproduction, 2018, 98, 465-479.	1.2	26
36	Quantitative proteomic profiling of bovine follicular fluid during follicle developmentâ€. Biology of Reproduction, 2017, 97, 835-849.	1.2	25

#	Article	IF	CITATIONS
37	Update and overview on assisted reproductive technologies (ARTs) in Brazil. Animal Reproduction, 2016, 13, 300-312.	0.4	25
38	Improvement in recovery of embryos/ova using a shallow uterine horn flushing technique in superovulated Holstein heifers. Theriogenology, 2003, 60, 1319-1330.	0.9	24
39	Profiles of prostaglandin F2α metabolite in dairy cattle during luteal regression and pregnancy: implications for corpus luteum maintenanceâ€. Biology of Reproduction, 2019, 101, 76-90.	1.2	24
40	Progesterone-based fixed-time artificial insemination protocols for dairy cows: Gonadotropin-releasing hormone versus estradiol benzoate at initiation and estradiol cypionate versus estradiol benzoate at the end. Journal of Dairy Science, 2016, 99, 9227-9237.	1.4	22
41	Progesterone-based timed AI protocols for Bos indicus cattle II: Reproductive outcomes of either EB or GnRH-type protocol, using or not GnRH at AI. Theriogenology, 2020, 145, 86-93.	0.9	22
42	Physiological mechanisms involved in maintaining the corpus luteum during the first two months of pregnancy. Animal Reproduction, 2018, 15, 805-821.	0.4	22
43	Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells. Reproduction, Fertility and Development, 2017, 29, 1787.	0.1	20
44	The methylation patterns of the <i>IGF2</i> and <i>IGF2R</i> genes in bovine spermatozoa are not affected by flow•ytometric sex sorting. Molecular Reproduction and Development, 2012, 79, 77-84.	1.0	19
45	Evolution of knowledge on ovarian physiology and its contribution to the widespread application of reproductive biotechnologies in South American cattle. Animal Reproduction, 2018, 15, 1003-1014.	0.4	19
46	Endocrine and metabolic differences between Bos taurus and Bos indicus cows andimplications for reproductive management. Animal Reproduction, 2016, 13, 168-181.	0.4	19
47	Effects of deep-horn AI on fertilization and embryo production in superovulated cows and heifers. Theriogenology, 2013, 80, 1074-1081.	0.9	18
48	Extracellular vesicles of follicular fluid from heat-stressed cows modify the gene expression of in vitro-matured oocytes. Animal Reproduction Science, 2019, 205, 94-104.	0.5	18
49	Interactions of circulating estradiol and progesterone on changes in endometrial area and pituitary responsiveness to GnRHâ€. Biology of Reproduction, 2020, 103, 643-653.	1.2	18
50	Short communication: Follicle superstimulation before ovum pick-up for in vitro embryo production in Holstein cows. Journal of Dairy Science, 2016, 99, 9307-9312.	1.4	17
51	Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles. Journal of Dairy Science, 2016, 99, 9174-9183.	1.4	17
52	Progesterone-based timed Al protocols for Bos indicus cattle I: Evaluation of ovarian function. Theriogenology, 2020, 145, 126-137.	0.9	17
53	Maintenance or regression of the corpus luteum during multiple decisive periods of bovinepregnancy. Animal Reproduction, 2016, 13, 217-233.	0.4	17
54	Follicular dynamics, circulating progesterone, and fertility in Holstein cows synchronized with reused intravaginal progesterone implants that were sanitized by autoclave or chemical disinfection. Journal of Dairy Science, 2018, 101, 3554-3567.	1.4	16

#	Article	IF	CITATIONS
55	Fatores nutricionais associados à reprodução da fêmea bovina. Revista Brasileira De Zootecnia, 2010, 39, 422-432.	0.3	15
56	A diet enriched in linoleic acid compromises the cryotolerance of embryos from superovulated beef heifers. Reproduction, Fertility and Development, 2014, 26, 511.	0.1	15
57	Flow cytometry sex sorting affects bull sperm longevity and compromises their capacity to bind to oviductal cells. Livestock Science, 2018, 207, 30-37.	0.6	15
58	Mechanisms regulating follicle selection in ruminants: lessons learned from multiple ovulation models. Animal Reproduction, 2018, 15, 660-679.	0.4	15
59	In vitro and in vivo analysis of fatty acid effects on metabolism of 17β-estradiol and progesterone in dairy cows. Journal of Dairy Science, 2010, 93, 1934-1943.	1.4	14
60	Improvement of embryo production by the replacement of the last two doses of porcine follicle-stimulating hormone with equine chorionic gonadotropin in Sindhi donors. Animal Reproduction Science, 2011, 125, 119-123.	0.5	14
61	Luteal changes after treatment with sub-luteolytic doses of prostaglandin (cloprostenol sodium) in cattle. Animal Reproduction Science, 2015, 153, 8-12.	0.5	14
62	Cooled semen for fixed-time artificial insemination in beef cattle. Reproduction, Fertility and Development, 2016, 28, 1004.	0.1	14
63	Effect of follicular wave synchronization on in vitro embryo production in heifers. Animal Reproduction Science, 2010, 117, 201-207.	0.5	13
64	Morphology, sex ratio and gene expression of Day 14 in vivo and in vitro bovine embryos. Reproduction, Fertility and Development, 2013, 25, 600.	0.1	13
65	Associations of insulin resistance later in lactation on fertility of dairy cows. Theriogenology, 2016, 86, 263-269.	0.9	13
66	Comparison of two timed artificial insemination system schemes to synchronize estrus and ovulation in Nellore cattle. Theriogenology, 2016, 86, 1939-1943.	0.9	12
67	Interferon-Tau Exerts Direct Prosurvival and Antiapoptotic Actions in Luteinized Bovine Granulosa Cells. Scientific Reports, 2019, 9, 14682.	1.6	12
68	Hormonal combinations aiming to improve reproductive outcomes of Bos indicus cows submitted to estradiol/progesterone-based timed AI protocols. Theriogenology, 2021, 169, 89-99.	0.9	12
69	Progesterone-based timed AI protocols for Bos indicus cattle III: Comparison of protocol lengths. Theriogenology, 2020, 152, 29-35.	0.9	11
70	Effect of Presence or Absence of Corpora Lutea on Milk Production in East Friesian Dairy Ewes. Journal of Dairy Science, 2002, 85, 790-796.	1.4	10
71	Ovarian function in cows submitted to acute stress during proestrus. Livestock Science, 2011, 138, 105-108.	0.6	10
72	Effects of dry matter and energy intake on quality of oocytes and embryos in ruminants. Reproduction, Fertility and Development, 2017, 29, 58.	0.1	10

#	Article	IF	CITATIONS
73	Effect of different chorionic gonadotropins on final growth of the dominant follicle in Bos indicus cows. Theriogenology, 2018, 111, 52-55.	0.9	10
74	Circulating progesterone concentrations in nonlactating Holstein cows during reuse of intravaginal progesterone implants sanitized by autoclave or chemical disinfection. Journal of Dairy Science, 2018, 101, 3537-3544.	1.4	10
75	Prevalence and risk factors related to anovular phenotypes in dairy cows. Journal of Dairy Science, 2021, 104, 2369-2383.	1.4	10
76	CaracterÃsticas seminais de touros Curraleiros e Holandeses submetidos à insulação escrotal. Pesquisa Agropecuaria Brasileira, 2006, 41, 863-868.	0.9	9
77	Progesterone release profile and follicular development in Holstein cows receiving intravaginal progesterone devices. Theriogenology, 2021, 172, 207-215.	0.9	9
78	Trio, a novel bovine high fecundity allele: III. Acquisition of dominance and ovulatory capacity at a smaller follicle sizeâ€. Biology of Reproduction, 2018, 98, 350-365.	1.2	8
79	Extending the Postpartum Anovulatory Period in Dairy Cattle with Estradiol Cypionate. Journal of Dairy Science, 2002, 85, 3238-3249.	1.4	7
80	The effects of progesterone treatment following artificial insemination on the reproductive performance of dairy cows. Tropical Animal Health and Production, 2014, 46, 405-410.	0.5	7
81	Luteolysis in Bos indicus cows on Days 5 and 7 of estrous cycle with varying doses of PGF2α. Theriogenology, 2016, 86, 1268-1274.	0.9	7
82	Downregulated luteolytic pathways in the transcriptome of early pregnancy bovine corpus luteum are mimicked by interferon-tau in vitro. BMC Genomics, 2021, 22, 452.	1.2	7
83	Weight and age at puberty and their correlations with morphometric measurements in crossbred breed Suffolk ewe lambs. Revista Brasileira De Zootecnia, 2010, 39, 134-141.	0.3	6
84	In vivo embryo production in cows superovulated 1 or 2 days after ovum pick-up. Reproduction, Fertility and Development, 2014, 26, 527.	0.1	6
85	Embryo production in heifers with low or high dry matter intake submitted to superovulation. Theriogenology, 2017, 92, 30-35.	0.9	6
86	Cinética de espermatozoides criopreservados de bovinos após sexagem por citometria de fluxo. Pesquisa Agropecuaria Brasileira, 2009, 44, 1346-1351.	0.9	5
87	Equine chorionic gonadotropin increases fertility of grazing dairy cows that receive fixed-time artificial insemination in the early but not later postpartum period. Theriogenology, 2017, 98, 36-40.	0.9	5
88	Investigation of mechanisms involved in regulation of progesterone catabolism using an overfed versus underfed ewe–lamb model1. Journal of Animal Science, 2017, 95, 5537-5546.	0.2	5
89	Progesterone release profile and follicular development in Nelore cows receiving intravaginal progesterone devices. Theriogenology, 2022, 178, 77-84.	0.9	5
90	Efficiency of superstimulatory protocol P-36 associated with the administration of eCG and LH in Nelore cows. Theriogenology, 2014, 82, 715-719.	0.9	4

#	Article	IF	CITATIONS
91	Oxytocin-induced prostaglandin F2-alpha release is low in early bovine pregnancy but increases during the second month of pregnancyâ€. Biology of Reproduction, 2019, 102, 412-423.	1.2	4
92	Concentrações séricas hormonais em vacas azebuadas submetidas à baixa e alta ingestão alimentar. Pesquisa Agropecuaria Brasileira, 2008, 43, 243-247.	0.9	4
93	Função ovariana de novilhas Nelore alimentadas com dieta suplementada com gordura protegida ruminal. Pesquisa Agropecuaria Brasileira, 2010, 45, 408-414.	0.9	3
94	Reuse of norgestomet implants in an eCG-based superovulation protocol administered to Nelore (Bos) Tj ETQq0 (0 0 rgBT /0 0.0	Dvgrlock 10 T
95	297 LACK OF IMPROVEMENT ON EMBRYO PRODUCTION BY THE REPLACEMENT OF THE LAST TWO DOSES OF pFSH BY eCG IN SUPERSTIMULATED NELORE HEIFERS. Reproduction, Fertility and Development, 2009, 21, 245.	0.1	3
96	Avaliações ultra-sonográfica, macroscópica e histológica da biopsia testicular em ovinos. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2002, 54, 233-241.	0.1	3
97	Short communication: Heat stress does not affect induced luteolysis in Holstein cows. Journal of Dairy Science, 2020, 103, 5629-5633.	1.4	2
98	Characterization of allele-specific expression of the X-linked gene MAO-A in trophectoderm cells of bovine embryos produced by somatic cell nuclear transfer. Genetics and Molecular Research, 2015, 14, 12128-12136.	0.3	2
99	310 Genetics is the essential factor for the precocious puberty in Nellore heifers. Journal of Animal Science, 2017, 95, 153-154.	0.2	1
100	Fertility and Infertility in Bos indicus. , 2019, , 500-509.		1

Fertility and Infertility in Bos indicus. , 2019, , 500-509. 100

101	Low levels of sulfur and cobalt during the pre- and periconceptional periods affect the oocyte yield of donors and the DNA methylome of preimplantation bovine embryos. Journal of Developmental Origins of Health and Disease, 2021, , 1-13.	0.7	1
102	Testicular biopsy with Tru-Cut needle in conjunction with fibrin adhesive or nylon suture: assessment of post-biopsy testicular function in rams. Small Ruminant Research, 2002, 45, 25-31.	0.6	0
103	135 IN VITRO DEVELOPMENT OF IN VIVO PRODUCED EMBRYOS FROZEN AT MORULA OR BLASTOCYST STAGES. Reproduction, Fertility and Development, 2008, 20, 148.	0.1	0
104	INFLUÊNCIA DE PROCEDIMENTOS GINECOLÓGICOS FREQUENTES NO DESEMPENHO PRODUTIVO E REPRODUTIVO DE FÊMEAS BUBALINAS MURRAH. Ciencia Animal Brasileira, 2013, 14, .	0.3	0
105	Male Embryos Produced in vitro Deviate From Their in vivo Counterparts in Placental Gene Expression on Day 32 of Pregnancy. Frontiers in Animal Science, 2022, 3, .	0.8	0