Eric Leroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9174013/publications.pdf

Version: 2024-02-01

236833 276775 1,691 48 25 41 h-index citations g-index papers 49 49 49 1931 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Contour Fitting of Fused Filaments Cross-Section Images by Lemniscates of Booth: Application to Viscous Sintering Kinetics Modeling. Polymers, 2021, 13, 3965.	2.0	1
2	Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydrate Polymers, 2020, 230, 115591.	5.1	20
3	A drug delivery system obtained by hot-melt processing of zein plasticized by a pharmaceutically active ionic liquid. Journal of Materials Chemistry B, 2020, 8, 4672-4679.	2.9	13
4	Viscous sintering kinetics of biopolymer filaments extruded for 3D printing. Polymer Testing, 2019, 77, 105873.	2.3	15
5	Fusion-bonding behavior of plasticized corn proteins in fused deposition modeling process. AIP Conference Proceedings, 2019, , .	0.3	1
6	Material extrusion of plant biopolymers: Opportunities & Deportunities & Printing. Additive Manufacturing, 2018, 21, 220-233.	1.7	54
7	Small-scale food process engineering $\hat{a} \in \mathbb{R}^n$ Challenges and perspectives. Innovative Food Science and Emerging Technologies, 2018, 46, 122-130.	2.7	34
8	Nanostructured cellulose-xyloglucan blends via ionic liquid/water processing. Carbohydrate Polymers, 2017, 168, 163-172.	5.1	15
9	On the representative elementary size concept to evaluate the compatibilisation of a plasticised biopolymer blend. Carbohydrate Polymers, 2017, 172, 120-129.	5.1	16
10	Rheology and structural changes of plasticized zeins in the molten state. Rheologica Acta, 2017, 56, 941-953.	1.1	12
11	Choline chloride vs choline ionic liquids for starch thermoplasticization. Carbohydrate Polymers, 2017, 177, 424-432.	5.1	33
12	Rheological characterization of plasticized corn proteins for fused deposition modeling. AIP Conference Proceedings, 2017, , .	0.3	1
13	3D printing of maize protein by fused deposition modeling. AIP Conference Proceedings, 2017, , .	0.3	8
14	Cellulose-xyloglucan composite film processing using ionic liquids as co-solvents. AIP Conference Proceedings, 2017, , .	0.3	1
15	Plasticized protein for 3D printing by fused deposition modeling. AIP Conference Proceedings, 2016, , .	0.3	4
16	Biofriendly ionic liquids for starch plasticization: a screening approach. RSC Advances, 2016, 6, 90331-90337.	1.7	36
17	Plant-crafted starches for bioplastics production. Carbohydrate Polymers, 2016, 152, 398-408.	5.1	64
18	Rubberâ€based acrylate resins: An alternative for tire recycling and carbon neutral thermoset materials design. Journal of Applied Polymer Science, 2016, 133, .	1.3	2

#	Article	IF	Citations
19	Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites. Cellulose, 2016, 23, 529-543.	2.4	21
20	The kinetic behavior of Liquid Silicone Rubber: A comparison between thermal and rheological approaches based on gel point determination. Reactive and Functional Polymers, 2016, 101, 20-27.	2.0	29
21	Interphase vs confinement in starch-clay bionanocomposites. Carbohydrate Polymers, 2015, 117, 746-752.	5.1	12
22	Hydroxyl telechelic natural rubber-based polyurethane: Influence of molecular weight on non-isothermal cure kinetics. Thermochimica Acta, 2015, 620, 51-58.	1.2	4
23	Structural origin of stress and shape recovery in shape memory starch. Polymer, 2015, 77, 361-365.	1.8	7
24	Influence of reversion on adhesion in the rubber-to-metal vulcanization-bonding process. Polymer Testing, 2015, 41, 157-162.	2.3	7
25	Shape memory starch–clay bionanocomposites. Carbohydrate Polymers, 2015, 116, 307-313.	5.1	35
26	Understanding the destructuration of starch in water–ionic liquid mixtures. Green Chemistry, 2015, 17, 291-299.	4.6	59
27	Glycol based plasticisers for salt modified starch. RSC Advances, 2014, 4, 40421-40427.	1.7	28
28	Rheological characterization and modelling of the rubber to metal vulcanization-bonding process. Polymer Testing, 2014, 36, 88-94.	2.3	6
29	A continuous kinetic model of rubber vulcanization predicting induction and reversion. Polymer Testing, 2013, 32, 575-582.	2.3	45
30	A knowledge based approach for elastomer cure kinetic parameters estimation. Polymer Testing, 2013, 32, 9-14.	2.3	30
31	Rheological characterization of a thermally unstable bioplastic in injection molding conditions. Polymer Degradation and Stability, 2012, 97, 1915-1921.	2.7	35
32	Compatibilization of starch–zein melt processed blends by an ionic liquid used as plasticizer. Carbohydrate Polymers, 2012, 89, 955-963.	5.1	94
33	Deep eutectic solvents as functional additives for starch based plastics. Green Chemistry, 2012, 14, 3063.	4.6	89
34	Thermoplastic starch plasticized by an ionic liquid. Carbohydrate Polymers, 2010, 82, 256-263.	5.1	127
35	Compatibilizing thermoplastic/ground tyre rubber powder blends: Efficiency and limits. Polymer Testing, 2008, 27, 901-907.	2.3	73
36	Optimizing a recycling process of SMC composite waste. Waste Management, 2008, 28, 541-548.	3.7	31

ERIC LEROY

#	Article	IF	CITATIONS
37	Polyethylene/ground tyre rubber blends: Influence of particle morphology and oxidation on mechanical properties. Polymer Testing, 2007, 26, 274-281.	2.3	93
38	Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA. Polymers for Advanced Technologies, 2006, 17, 327-334.	1.6	99
39	Influence of talc physical properties on the fire retarding behaviour of (ethylene–vinyl acetate) Tj ETQq1 1 0.784	314 rgBT 2.7	/Qyerlock 1(
40	Evolution of the coefficient of thermal expansion of a thermosetting polymer during cure reaction. Polymer, 2005, 46, 9919-9927.	1.8	12
41	Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA). Materials Letters, 2005, 59, 36-39.	1.3	119
42	Treatment of SMC Composite Waste for Recycling as Reinforcing Fillers in Thermoplastics. Macromolecular Symposia, 2005, 221, 227-236.	0.4	11
43	Segmental Dynamics in Miscible Polymer Blends: Modeling the Combined Effects of Chain Connectivity and Concentration Fluctuations. Macromolecules, 2003, 36, 7280-7288.	2.2	74
44	Modelling segmental dynamics in miscible polymer blends. Macromolecular Symposia, 2003, 198, 19-28.	0.4	1
45	Quantitative Study of Chain Connectivity Inducing Effective Glass Transition Temperatures in Miscible Polymer Blends. Macromolecules, 2002, 35, 5587-5590.	2.2	67
46	Validation in process-like conditions of the kinetic and thermophysical modeling of a dicyanate ester/glass fibers composite. Thermochimica Acta, 2002, 388, 313-325.	1.2	8
47	A Method of Estimating Kinetic Parameters of Thermoset Cures: Application to a Dicyanate Ester Resin. Macromolecular Chemistry and Physics, 2001, 202, 465-474.	1.1	26
48	Determination of activation energy and preexponential factor of thermoset reaction kinetics using differential scanning calorimetry in scanning mode: Influence of baseline shape on different calculation methods. Journal of Applied Polymer Science, 2000, 78, 2262-2271.	1.3	29