
Robert E Speight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9173938/publications.pdf Version: 2024-02-01

POREDT E SDEICHT

#	Article	IF	CITATIONS
1	Valorization of sugarcane biorefinery residues using fungal biocatalysis. Biomass Conversion and Biorefinery, 2022, 12, 997-1011.	2.9	8
2	Insights into amoxicillin degradation in water by non-thermal plasmas. Chemosphere, 2022, 291, 132757.	4.2	21
3	Valorisation of keratin waste: Controlled pretreatment enhances enzymatic production of antioxidant peptides. Journal of Environmental Management, 2022, 301, 113945.	3.8	7
4	Biorefining within food loss and waste frameworks: A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111781.	8.2	12
5	Platforms to accelerate biomanufacturing of enzyme and probiotic animal feed supplements: discovery considerations and manufacturing implications. Animal Production Science, 2022, 62, 1113-1128.	0.6	5
6	Engineering Enzyme Properties for Improved Biocatalytic Processes in Batch and Continuous Flow. Organic Process Research and Development, 2022, 26, 1914-1924.	1.3	24
7	Towards commercial levels of astaxanthin production in Phaffia rhodozyma. Journal of Biotechnology, 2022, 350, 42-54.	1.9	14
8	Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. Scientific Reports, 2022, 12, 7560.	1.6	6
9	Filamentous fungi for future functional food and feed. Current Opinion in Biotechnology, 2022, 76, 102729.	3.3	28
10	Wastes to profit: a circular economy approach to value-addition in livestock industries. Animal Production Science, 2021, 61, 541.	0.6	22
11	Synergistic optimisation of expression, folding, and secretion improves E. coli AppA phytase production in Pichia pastoris. Microbial Cell Factories, 2021, 20, 8.	1.9	11
12	Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris. Biotechnology for Biofuels, 2021, 14, 80.	6.2	30
13	Highly efficient production of transfructosylating enzymes using low-cost sugarcane molasses by A. pullulans FRR 5284. Bioresources and Bioprocessing, 2021, 8, .	2.0	8
14	Comparison of spray-drying and freeze-drying for inoculum production of the probiotic Bacillus amyloliquefaciens strain H57. Food and Bioproducts Processing, 2021, 130, 121-131.	1.8	7
15	Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A. Bioresources and Bioprocessing, 2021, 8, .	2.0	3
16	Future fashion, biotechnology and the living world: microbial cell factories and forming new â€~oddkins'. Continuum, 2021, 35, 897-913.	0.5	7
17	Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends. Waste Management, 2020, 102, 149-160.	3.7	83
18	Probiotic Bacillus amyloliquefaciens H57 ameliorates subclinical necrotic enteritis in broiler chicks by maintaining intestinal mucosal integrity and improving feed efficiency. Poultry Science, 2020, 99, 4278-4293.	1.5	28

ROBERT E SPEIGHT

4

#	Article	IF	CITATIONS
19	Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochemical Engineering Journal, 2020, 163, 107747.	1.8	18
20	Chemo-Radiative Stress of Plasma as a Modulator of Charge-Dependent Nanodiamond Cytotoxicity. ACS Applied Bio Materials, 2020, 3, 7202-7210.	2.3	1
21	Integral Membrane Fatty Acid Desaturases: A Review of Biochemical, Structural, and Biotechnological Advances. European Journal of Lipid Science and Technology, 2020, 122, 2000181.	1.0	15
22	Enzymatic removal of dags from livestock: an agricultural application of enzyme technology. Applied Microbiology and Biotechnology, 2020, 104, 5739-5748.	1.7	3
23	Bactericidal Silver Nanoparticles by Atmospheric Pressure Solution Plasma Processing. Nanomaterials, 2020, 10, 874.	1.9	20
24	Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species. Journal of Chemical Ecology, 2020, 46, 675-687.	0.9	10
25	A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnology, 2020, 20, 12.	1.7	12
26	High-Efficiency Biocatalytic Conversion of Thebaine to Codeine. ACS Omega, 2020, 5, 9339-9347.	1.6	7
27	Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production. Catalysts, 2020, 10, 184.	1.6	39
28	Effect of multi-modal environmental stress on dose-dependent cytotoxicity of nanodiamonds in Saccharomyces cerevisiae cells. Sustainable Materials and Technologies, 2019, 22, e00123.	1.7	6
29	Highâ€Performance Plasmaâ€Enabled Biorefining of Microalgae to Valueâ€Added Products. ChemSusChem, 2019, 12, 4976-4985.	3.6	32
30	Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. Nanoscale, 2019, 11, 19497-19505.	2.8	22
31	Coâ€utilization of acidified glycerol pretreatedâ€sugarcane bagasse for microbial oil production by a novel <i>Rhodosporidium</i> strain. Engineering in Life Sciences, 2019, 19, 217-228.	2.0	19
32	Enzyme systems for effective dag removal from cattle hides. Animal Production Science, 2019, 59, 1387.	0.6	4
33	Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris. Applied and Environmental Microbiology, 2018, 84, .	1.4	54
34	Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20, 5276-5284.	4.6	302
35	Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Scientific Reports, 2018, 8, 8252.	1.6	23

Biogas, Bioreactors and Bacterial Methane Oxidation. , 2018, , 213-235.

ROBERT E SPEIGHT

#	Article	IF	CITATIONS
37	Understanding the dynamics of keratin weakening and hydrolysis by proteases. PLoS ONE, 2018, 13, e0202608.	1.1	56
38	Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 2017, 312, 336-350.	6.6	267
39	Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. Journal of Chemical Ecology, 2017, 43, 891-901.	0.9	36
40	Cell-free pipeline for discovery of thermotolerant xylanases and endo -1,4-β-glucanases. Journal of Biotechnology, 2017, 259, 191-198.	1.9	6
41	An improved and general streamlined phylogenetic protocol applied to the fatty acid desaturase family. Molecular Phylogenetics and Evolution, 2017, 115, 50-57.	1.2	13
42	Matching the biomass to the bioproduct. ChemistrySelect, 2016, 1, .	0.7	2
43	1. Matching the biomass to the bioproduct. , 2016, , 1-44.		2
44	Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 2016, 18, 3020-3028.	4.6	143
45	The repertoire of nitrogen assimilation in <i>Rhodococcus</i> : catalysis, pathways and relevance in biotechnology and bioremediation. Journal of Chemical Technology and Biotechnology, 2014, 89, 787-802.	1.6	8
46	Role of amine oxidase expression to maintain putrescine homeostasis in Rhodococcus opacus. Enzyme and Microbial Technology, 2013, 52, 286-295.	1.6	5
47	Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway. Systematic and Applied Microbiology, 2013, 36, 457-466.	1.2	11
48	Technoeconomic analysis of renewable aviation fuel from microalgae, <i>Pongamia pinnata</i> , and sugarcane. Biofuels, Bioproducts and Biorefining, 2013, 7, 416-428.	1.9	112
49	Cloning, expression, characterisation and mutational analysis of l-aspartate oxidase from Pseudomonas putida. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 17-22.	1.8	12
50	A Survey of the 2010 Quartz Crystal Microbalance Literature. Journal of Molecular Recognition, 2012, 25, 451-473.	1.1	124
51	Identification, functional expression and kinetic analysis of two primary amine oxidases from Rhodococcus opacus. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 73-82.	1.8	8
52	High-level expression of Rhodotorula gracilis d-amino acid oxidase in Pichia pastoris. Biotechnology Letters, 2011, 33, 557-563.	1.1	12
53	Effects of dissolved oxygen availability and culture biomass at induction upon the intracellular expression of monoamine oxidase by recombinant E. coli in fed batch bioprocesses. Process Biochemistry, 2011, 46, 721-729.	1.8	10
54	Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst. Microbial Cell Factories, 2010, 9, 24.	1.9	47

ROBERT E SPEIGHT

#	Article	IF	CITATIONS
55	Preparative deracemization of unnatural amino acids. Biochemical Society Transactions, 2006, 34, 287.	1.6	35
56	Novel Biocatalyst Technology for the Preparation of Chiral Amines. ChemInform, 2005, 36, no.	0.1	1
57	Enantioselective epoxidation of linolenic acid catalysed by cytochrome P450BM3 from Bacillus megaterium. Organic and Biomolecular Chemistry, 2005, 3, 2688.	1.5	27
58	Identification of broad specificity P450CAM variants by primary screening against indole as substrate. Chemical Communications, 2005, , 3652.	2.2	36
59	Rapid identification of cytochrome P450cam variants by in vivo screening of active site libraries. Tetrahedron: Asymmetry, 2004, 15, 2829-2831.	1.8	13
60	Distamycin A affects the stability of NF-?B p50-DNA complexes in a sequence-dependent manner. Journal of Molecular Recognition, 2002, 15, 19-26.	1.1	6
61	Analysis of the NF-κB p50 dimer interface by diversity screening 1 1Edited by J. Wells. Journal of Molecular Biology, 2001, 310, 563-575.	2.0	22
62	Direct and Quantitative Detection of Bacteriophage by "Hearing―Surface Detachment Using a Quartz Crystal Microbalance. Analytical Chemistry, 2001, 73, 3935-3939.	3.2	67
63	A new plasmid display technology for the in vitro selection of functional phenotype–genotype linked proteins. Chemistry and Biology, 2001, 8, 951-965.	6.2	27
64	The salt dependence of DNA recognition by NF-kappaB p50: a detailed kinetic analysis of the effects on affinityand specificity. Nucleic Acids Research, 1999, 27, 1063-1069.	6.5	61