Yoshihiko Uematsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9173723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A newly developed tool without probe for friction stir spot welding and its performance. Journal of Materials Processing Technology, 2010, 210, 844-851.	3.1	162
2	Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. International Journal of Machine Tools and Manufacture, 2007, 47, 2230-2236.	6.2	156
3	Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al–Mg–Si alloy. International Journal of Fatigue, 2008, 30, 1956-1966.	2.8	145
4	Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 434, 131-140.	2.6	134
5	Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several aluminium alloys. International Journal of Fatigue, 2009, 31, 1443-1453.	2.8	93
6	Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 138-145.	2.6	86
7	Effect of processing parameters on static strength of dissimilar friction stir spot welds between different aluminium alloys. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 143-148.	1.7	82
8	Comparison of fatigue behaviour between resistance spot and friction stir spot welded aluminium alloy sheets. Science and Technology of Welding and Joining, 2009, 14, 62-71.	1.5	71
9	Defect-dominated fatigue behavior in type 630 stainless steel fabricated by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 19-26.	2.6	66
10	Effect of friction stir processing conditions on fatigue behavior and texture development in A356-T6 cast aluminum alloy. International Journal of Fatigue, 2015, 80, 192-202.	2.8	47
11	Fatigue behaviour of Al/steel dissimilar resistance spot welds fabricated using Al–Mg interlayer. Science and Technology of Welding and Joining, 2016, 21, 223-233.	1.5	47
12	Fatigue behavior of friction stir welded Al–Mg–Sc alloy. International Journal of Fatigue, 2015, 77, 1-11.	2.8	46
13	Effect of temperature on high cycle fatigue behaviour in 18Cr–2Mo ferritic stainless steel. International Journal of Fatigue, 2008, 30, 642-648.	2.8	44
14	Comparative study of fatigue behaviour in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds fabricated by scroll grooved tool without probe. Science and Technology of Welding and Joining, 2012, 17, 348-356.	1.5	43
15	Fatigue crack propagation and fracture mechanisms of wrought magnesium alloys in different environments. International Journal of Fatigue, 2009, 31, 1137-1143.	2.8	41
16	Improvement of corrosion fatigue strength of magnesium alloy by multilayer diamond-like carbon coatings. Surface and Coatings Technology, 2011, 205, 2778-2784.	2.2	40
17	Delamination behavior of a carbon-fiber-reinforced thermoplastic polymer at high temperatures. Composites Science and Technology, 1995, 53, 333-341.	3.8	38
18	Fatigue behaviour of SiC-particulate-reinforced aluminium alloy composites with different particle sizes at elevated temperatures. Composites Science and Technology, 2008, 68, 2785-2791	3.8	38

#	Article	IF	CITATIONS
19	Stress corrosion cracking behavior of the wrought magnesium alloy AZ31 under controlled cathodic potentials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 531, 171-177.	2.6	38
20	Prediction of fatigue limit in additively manufactured Ti-6Al-4V alloy at elevated temperature. International Journal of Fatigue, 2019, 126, 55-61.	2.8	38
21	EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy. International Journal of Fatigue, 2016, 84, 1-8.	2.8	33
22	Residual stress measurement of Al/steel dissimilar friction stir weld. Science and Technology of Welding and Joining, 2019, 24, 685-694.	1.5	32
23	Effect of strain-induced martensitic transformation on fatigue behavior of type 304 stainless steel. Procedia Engineering, 2010, 2, 323-330.	1.2	30
24	Fatigue behaviour of dissimilar Al alloy/galvanised steel friction stir spot welds fabricated by scroll grooved tool without probe. Science and Technology of Welding and Joining, 2015, 20, 670-678.	1.5	29
25	Fatigue behaviour of cast magnesium alloy AZ91 microstructurally modified by friction stir processing. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32, 541-551.	1.7	28
26	Atomic force microscopy and the mechanism of fatigue crack growth. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24, 831-842.	1.7	27
27	Fatigue behaviour of dissimilar friction stir spot weld between A6061 and SPCC welded by a scrolled groove shoulder tool. Procedia Engineering, 2010, 2, 193-201.	1.2	27
28	Fatigue Limit Prediction of Large Scale Cast Aluminum Alloy A356. , 2014, 3, 924-929. Effect of <mml:math <="" altimg="sil.gif" display="inline" overflow="scroll" td=""><td></td><td>27</td></mml:math>		27
29	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.2	25
30	Fatigue behaviour of dissimilar friction stir spot welds between A6061-T6 and low carbon steel sheets welded by a scroll grooved tool without probe. Fatigue and Fracture of Engineering Materials and Structures, 2011, 34, 581-591.	1.7	25
31	Fatigue crack propagation of AZ61 magnesium alloy under controlled humidity and visualization of hydrogen diffusion along the crack wake. International Journal of Fatigue, 2014, 59, 234-243.	2.8	24
32	Influence of local fatigue damage evolution on crack initiation behavior in a friction stir welded Al-Mg-Sc alloy. International Journal of Fatigue, 2017, 99, 151-162.	2.8	24
33	Heterogeneous local straining behavior under monotonic and cyclic loadings in a friction stir welded aluminum alloy. International Journal of Fatigue, 2019, 125, 138-148.	2.8	21
34	Fatigue crack propagation near the interface between Al and steel in dissimilar Al/steel friction stir welds. International Journal of Fatigue, 2020, 138, 105706.	2.8	19
35	Atomic force microscopy of fatigue crack growth behavior in the low K region. International Journal of Fatigue, 2004, 26, 1159-1168.	2.8	18
36	Fracture toughness and fatigue crack propagation in cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 471, 15-21.	2.6	18

#	Article	IF	CITATIONS
37	Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 386-393.	2.6	18
38	Fatigue behavior of bulk β-type titanium alloy Ti–15Mo–5Zr–3Al annealed in high temperature nitrogen gas. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 351-359.	2.6	18
39	Fatigue Behavior of Friction Stir Welded Joints of 6061-T6 Aluminum Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 49-54.	0.1	17
40	Fatigue behavior of dissimilar friction stir welds between cast and wrought aluminum alloys. Strength of Materials, 2008, 40, 138-141.	0.2	17
41	Effect of quantity of martensitic transformation on fatigue behavior in type 304 stainless steel. Procedia Engineering, 2011, 10, 299-304.	1.2	17
42	Some factors exerting an influence on the coaxing effect of austenitic stainless steels. Fatigue and Fracture of Engineering Materials and Structures, 2012, 35, 1095-1104.	1.7	17
43	Coaxing Effect in Stainless Steels and High-Strength Steels. Key Engineering Materials, 2007, 345-346, 235-238.	0.4	16
44	Evaluation of fatigue crack propagation in dissimilar Al/steel friction stir welds. Procedia Structural Integrity, 2016, 2, 1007-1014.	0.3	16
45	Effect of solution treatment after nitriding on fatigue properties in type 304 stainless steel. International Journal of Fatigue, 2014, 68, 103-110.	2.8	15
46	Corrosion fatigue behavior of extruded AZ80, AZ61, and AM60 magnesium alloys in distilled water. Strength of Materials, 2008, 40, 130-133.	0.2	14
47	Effects of Prestrain on Fatigue Behaviour in Type 316 Stainless Steel. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 796-802.	0.2	13
48	Fatigue Behaviour of Friction Stir Spot Welded Al-Mg-Si Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 537-543.	0.1	13
49	Effect of Tool Shoulder Diameter on Mechanical Properties of Friction Stir Spot Welded Joints. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 268-274.	0.2	13
50	Fatigue behaviour of cast irons with spheroidal vanadium carbides dispersed within martensitic matrix microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 418, 326-334.	2.6	12
51	Fatigue behavior of dissimilar A6061/rolled steel (SS400) friction stir welds. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 112-118.	0.1	12
52	Improvement of fatigue properties in type 304 stainless steel by annealing treatment in nitrogen gas. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 578-588.	2.6	12
53	Fatigue behavior of AZ31 magnesium alloy evaluated using single crystal micro cantilever specimen. International Journal of Fatigue, 2016, 93, 30-37.	2.8	12
54	Effect of Friction Stir Processing on the Fatigue Behaviour of Cast Aluminium Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 69-75.	0.1	11

#	Article	IF	CITATIONS
55	Effects of annealing and quenching on fatigue behaviour in type 444 ferritic stainless steel. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 959-966.	1.7	10
56	Effect of thick DLC coating on fatigue behaviour of magnesium alloy in laboratory air and demineralised water. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33, 607-616.	1.7	10
57	Microstructural Changes of High-Chromium Ferritic Stainless Steel Subjected to Cyclic Loading in 475°C Embrittlement Region. Procedia Engineering, 2011, 10, 100-105.	1.2	10
58	Effect of Grain Size on Fatigue Behavior in AZ61 Mg Alloys Fabricated by MDFing. Materials Transactions, 2016, 57, 1454-1461.	0.4	10
59	Nonâ€destructive evaluation of fatigue damage and fatigue crack initiation in type 316 stainless steel by positron annihilation lineâ€shape and lifetime analyses. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1143-1153.	1.7	10
60	EBSDâ€assisted fractography of subâ€surface fatigue crack initiation mechanism in the ultrasonicâ€shotâ€peened βetaâ€type titanium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2239-2248.	1.7	10
61	Effect of Ultrasonic Shot Peening on High Cycle Fatigue Behavior in Type 304 Stainless Steel at Elevated Temperature. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 325-330.	0.1	9
62	Fatigue behaviour in AZ80A magnesium alloy with DLC/thermally splayed WC-12Co hybrid coating. Procedia Engineering, 2010, 2, 283-290.	1.2	8
63	Effects of Strain-Induced Martensitic Transformation on Fatigue Behavior of Type 304 Stainless Steel and Phase Transformation Analysis by EBSD. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 796-802.	0.1	8
64	Effect of sensitization on corrosion fatigue behavior of type 304 stainless steel annealed in nitrogen gas. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 33-41.	2.6	8
65	Joint microstructures, mechanical properties and fatigue behaviour of ferritic stainless steel SUS 430 welds with different filler metals. Welding International, 2018, 32, 427-435.	0.3	8
66	Temperature Dependence of Delamination Fracture Toughness of CF/PEEK and CF/PMR-15 Laminates Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 2286-2291.	0.2	7
67	Fatigue Behaviour of Friction Stir Welded AZ61 Magnesium Alloy. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2007, 25, 224-229.	0.1	7
68	Fatigue Behaviour of Friction Stir Welded A7075-T6 Aluminium Alloy in Air and 3% NaCl Solution. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 261-269.	0.1	7
69	Effects of Humidity and Water Environment on Fatigue Crack Propagation in Magnesium Alloys. Zairyo/Journal of the Society of Materials Science, Japan, 2007, 56, 764-770.	0.1	7
70	Fatigue Behavior of Type 304N2 High-Nitrogen Austenitic Stainless Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 956-961.	0.1	7
71	Aging and Fatigue Behaviour at Elevated Temperatures in Ferritic Stainless Steels with Different Cr Contents. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 962-968.	0.1	7
72	Direct, Real-time Observation of Fatigue Crack Growth Behavior under Single Overloads Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 1860-1866.	0.2	6

#	Article	IF	CITATIONS
73	AFM Observation of Slip Deformation Near Mode I Fatigue Crack Tip and Quantitative Analysis Using Image Processing Technique Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2000, 66, 1157-1164.	0.2	6
74	Welding Structure and Tensile-Shear Properties of Friction-Stir Spot Welds Joined by Scrolled Groove Shoulder Tool without Probe in Aluminium Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 228-234.	0.2	6
75	Effect of Grain Orientation on Small Fatigue Crack Growth Behaviour in Magnesium Alloy AZ31 Rolled Plate. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 311-316.	0.2	6
76	Fatigue Behaviour of Friction Stir Processed Cast Aluminium and Magnesium Alloys. Materials Science Forum, 2010, 638-642, 3727-3732.	0.3	6
77	Hydrogen Embrittlement Type Stress Corrosion Cracking Behavior of Wrought Magnesium Alloy AZ31. Procedia Engineering, 2011, 10, 578-582.	1.2	6
78	Effect of hydrogen on fatigue crack propagation behavior of wrought magnesium alloy AZ61 in NaCl solution under controlled cathodic potentials. Engineering Fracture Mechanics, 2015, 137, 88-96.	2.0	6
79	Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles. Journal of Materials Engineering and Performance, 2017, 26, 3169-3179.	1.2	6
80	Effect of Post Heat Treatment on Fatigue Behaviour of Friction Stir Spot Welded Al-Mg-Si Alloy. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2008, 26, 7-14.	0.1	6
81	Local strain analysis under quasi-static tensile loading in Al/steel dissimilar friction stir weld by a digital image correlation method. International Journal of Advanced Manufacturing Technology, 2022, 120, 349-360.	1.5	6
82	Effects of HIP and forging on fracture behaviour in cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2621-2628.	2.6	5
83	Effect of Film Elastic Modulus on Fatigue Behaviour of DLC-Coated Wrought Magnesium Alloy AZ61. Procedia Engineering, 2011, 10, 1087-1090.	1.2	5
84	Measuring the strong electrostatic and magnetic fields with proton radiography for ultra-high intensity laser channeling on fast ignition. Review of Scientific Instruments, 2014, 85, 11E612.	0.6	5
85	Fatigue strength improvement of Mg alloy AZ61 by double ultrasonic shot peening. Transactions of the JSME (in Japanese), 2016, 82, 16-00218-16-00218.	0.1	5
86	Fatigue behaviour of dissimilar friction stir welds between wrought and cast aluminium alloys. Science and Technology of Welding and Joining, 2018, 23, 219-226.	1.5	5
87	Fabrication of Recycled Carbon Fiber Reinforced Magnesium Alloy Composite by Friction Stir Processing Using 3-Flat Pin Tool and Its Fatigue Properties. Materials Transactions, 2018, 59, 475-481.	0.4	5
88	Mechanical properties of tailor welded Al/Steel blanks made by friction stir welding and the effect of post heat treatment. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2018, 36, 160-166.	0.1	5
89	Proposal of Fatigue Limit Design Curves for Additively Manufactured Ti-6Al-4V in a VHCF Regime Using Specimens with Artificial Defects. Metals, 2021, 11, 964.	1.0	5
90	Fatigue Crack Growth and Crack Closure Behavior of Ti-6Al-4V Alloy Under Variable-Amplitude		5

Loadings. , 1999, , 265-284.

#	Article	IF	CITATIONS
91	Effect of Test Temperature on Fatigue Behaviour in AC4CH Cast Aluminium Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 199-204.	0.1	5
92	Development of Fatigue Testing System for in-situ Observation by an Atomic Force Microscope and Small Fatigue Crack Growth Behavior in α-Brass. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 382-389.	0.4	4
93	Effect of post-heat treatment on the fatigue behaviour of a friction stir spot-welded Al–Mg–Si alloy. Welding International, 2009, 23, 481-489.	0.3	4
94	Fatigue Behavior of A5052 Aluminum Alloy with DLC/Thermally Sprayed WC-12Co Hybrid Coatings. Advanced Materials Research, 0, 538-541, 1693-1696.	0.3	4
95	Effects of Weld Metal and Test Temperature on Fatigue Behavior in Type 444 Stainless Steel Welds. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2012, 78, 432-441.	0.2	4
96	Fatigue behaviour of friction stir welded A7075-T6 aluminium alloy in air and 3% NaCl solution. Welding International, 2013, 27, 441-449.	0.3	4
97	Effect of Strain-Induced Martensitic Transformation on High Cycle Fatigue Behavior in Cyclically-Prestrained Type 304. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 744-749.	0.1	4
98	Fatigue limit prediction of A356-T6 cast aluminum alloys with different defect sizes sampled from an actual large-scale component. International Journal of Structural Integrity, 2017, 8, 617-631.	1.8	4
99	The effect of friction stir processing and post-aging treatment on fatigue behavior of Ca-added flame-resistant magnesium alloy. International Journal of Advanced Manufacturing Technology, 2018, 95, 2379-2391.	1.5	4
100	Characteristics of keyhole refill process using friction stir spot welding. Welding International, 2018, 32, 417-426.	0.3	4
101	Microstructures and Fatigue Behavior of Additively Manufactured Maraging Steel Deposited on Conventionally Manufactured Base Plate. Journal of Materials Engineering and Performance, 2021, 30, 4902-4910.	1.2	4
102	Initiation and Growth Behavior of Small Fatigue Cracks in Ultra-fine Grained P/M Aluminum Alloy at Elevated Temperatures. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 545-549.	0.1	4
103	Microstructure and Fatigue Behaviour of Mg2Si-Dispersed Magnesium Alloys Produced by Solid-State Synthesis. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 55-60.	0.1	4
104	Fundamentals of Fatigue and Recent Trends on Fatigue Design in Mechanical Structures. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 89-95.	0.1	4
105	Low cost estimation of Wöhler and Goodman–Haigh curves of Tiâ€6Alâ€4V samples by considering the stress ratio effect. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 441-450.	1.7	4
106	Small Fatigue Crack Initiation and Growth of SiC Whisker Reinforced Aluminum Composite Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1998, 64, 22-29.	0.2	3
107	Improvement of Fatigue Properties by Solution Treatment in Nitrided Type 304 Stainless Steel. , 2014, 3, 627-633.		3
108	Effect of Grain Orientation on Fatigue Behavior in Micro Cantilever of Magnesium Alloy AZ31. , 2014, 3,		3

Effect of (967-972. 108

7

#	ARTICLE	IF	CITATIONS
109	Fatigue behavior of Laves-phase-precipitated Nb-containing ferritic stainless steel JFE429EX in laboratory air and in 3%NaCl solution. Transactions of the JSME (in Japanese), 2015, 81, 15-00346-15-00346.	0.1	3
110	Delaying Effect of High-Density Electric Current on Fatigue Crack Growth in A6061-T6 Aluminum Alloy. Materials Transactions, 2016, 57, 2104-2109.	0.4	3
111	Microstructural Modification of AZ91 Magnesium Alloy Using Friction Stir Processing and Carbon Fibers. Materials Science Forum, 2017, 886, 55-58.	0.3	3
112	Recent Trends of Fatigue Research. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 688-694.	0.1	3
113	Effects of material strength levels and nugget sizes on fatigue behavior of resistance spot welded steel sheets. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2019, 37, 152-161.	0.1	3
114	Fatigue Behavior of Multi-Directionally Forged Commercial Purity Grade 2 Ti Plate in Laboratory Air and Ringer's Solution. Materials Transactions, 2018, 59, 1296-1303.	0.4	3
115	Delamination Crack Growth of Unidirectional Carbon Fiber Reinforced Thermoplastic Polymer under High Temperature Fatigue Zairyo/Journal of the Society of Materials Science, Japan, 1993, 42, 59-64.	0.1	3
116	Effect of Microstructure on Fatigue Crack Growth Behavior in Ti-6Al-4V Alloy Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 273-278.	0.1	3
117	Fatigue crack paths and properties in A356-T6 aluminum alloy microstructurally modified by friction stir processing under different conditions. Frattura Ed Integrita Strutturale, 2016, , .	0.5	3
118	A Study on Dislocation Movement and Stress Field near Fatigue Crack Tip by Discrete Dislocation Dynamics. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 1217-1224.	0.1	3
119	Fatigue Crack Growth Behavior in Ultra-Fine Grained P/M Aluminum Alloy under Repeated Two-Step Variable Amplitude Load Sequences. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 754-760.	0.1	3
120	Fatigue Behaviour of Resistance Spot Welded Joints of Al-Mg-Si Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 808-813.	0.1	3
121	Thickness Effect of Interlayer on Fatigue Behavior and Fatigue Fracture A5052 Mechanisms in Aluminum Alloy with DLC/Thermally Sprayed WC-12Co Hybrid Coatings. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 738-743.	0.1	3
122	Mode I Delamination of Carbon Fiber Reinforced Thermoplastic Polymer Under Static and Cyclic Creep at Elevated Temperatures. , 0, , 23-23-16.		3
123	Investigation of Fracture Mechanisms of Aramid/Epoxy Composites and Damage Estimation by Means of SAM Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1992, 58, 206-211.	0.2	2
124	Development of Fatigue Testing System for In-situ Observation by an Atomic Force Microscope and Small Fatigue Crack Growth Behavior in .ALPHABrass. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 588-595.	0.2	2
125	A Study in the Effect of Grain Boundary on Small Fatigue Crack Growth Behavior in .ALPHABrass by means of In-situ Atomic Force Microscopy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 895-902.	0.2	2
126	Fatigue Crack Growth Behavior of Ti-6Al-4V Alloy with Bimodal Microstructure under Repeated Two-step Load Sequences. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2005, 71, 1153-1159.	0.2	2

#	Article	IF	CITATIONS
127	A Study on the Mechanism of Small Fatigue Crack Deflection Behavior in .ALPHABrass by Means of In-situ Atomic Force Microscopy and Crystallographic Orientation Analysis. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 1268-1274.	0.1	2
128	A Study on the Mechanism of Small Fatigue Crack Deflection Behavior in Alpha-Brass by Means of In Situ Atomic Force Microscopy and Crystallo-Graphic Orientation Analysis. Key Engineering Materials, 2007, 353-358, 1225-1228.	0.4	2
129	Effect of Anodic Oxide Film on Fatigue Behaviour of Magnesium Alloys in Laboratory Air and Demineralized Water. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 122-127.	0.2	2
130	Fatigue Behavior of AZ80A Magnesium Alloy with DLC/Thermally Splayed WC-12Co Hybrid Coating. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 500-505.	0.2	2
131	Effect of DLC Film on Fatigue Behavior in Alloy Steels with Different Hardness and Inclusion Size. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 1097-1103.	0.1	2
132	Effect of Film Elastic Modulus on Fatigue Behavior of Wrought Magnesium Alloy AZ61 Coated with DLC Film. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2012, 78, 403-410.	0.2	2
133	Fatigue behavior of dissimilar friction stir spot welds between A6061 and AZ31 fabricated by a scroll grooved tool without probe. , 2013, , 213-218.		2
134	High ycle fatigue properties of beta Ti alloy 55Ti–30Nb–10Ta–5Zr, gum metal. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 1223-1231.	1.7	2
135	Improvement of Fatigue Properties in a Cast Aluminum Alloy by Roller Burnishing and Friction Stir Processing. Advanced Materials Research, 0, 891-892, 662-667.	0.3	2
136	Effect of Interlayer Thickness on Fatigue Behavior in A5052 Aluminum Alloy with Diamond-Like Carbon/Anodic-Oxide Hybrid Coating. Materials Transactions, 2015, 56, 1793-1799.	0.4	2
137	Effect of heat treatment at the temperature above βâ€transus on the microstructures and fatigue properties of pure Ti. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2800-2811.	1.7	2
138	411 Effect of Welding Condition on Static Strength of Dissimilar Friction Stir Spot Welds between Different Aluminium Alloys. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2006, 2006, 217-218.	0.0	2
139	Influence of joint line remnant on crack paths under static and fatigue loadings in friction stir welded Al-Mg-Sc alloy. Frattura Ed Integrita Strutturale, 2016, 10, 295-305.	0.5	2
140	Initiation and Growth Behavior of Small Fatigue Cracks in Ultra Fine-Grained P/M Aluminum Alloys. Zairyo/Journal of the Society of Materials Science, Japan, 2004, 53, 526-531.	0.1	2
141	Slip Deformation around Mode I Fatigue Crack Tip during One Loading Cycle. Zairyo/Journal of the Society of Materials Science, Japan, 2004, 53, 633-638.	0.1	2
142	321 Fatigue Behaviour in Extruded AZ80, AZ61 and AM60 Magnesium Alloys. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2005, 2005, 213-214.	0.0	2
143	Discrete Dislocation Analysis of Fatigue Crack Kinking Behavior. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 540-545.	0.1	2
144	Joint microstructures, mechanical properties and fatigue behavior of ferritic stainless steel SUS 430 welds with different filler metals. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2016, 34, 167-174.	0.1	2

#	Article	IF	CITATIONS
145	Effect of weld metals on fatigue behavior of Nb-added ferritic stainless steel JFE429EX welds in laboratory air and in 3% NaCl solution. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2018, 36, 238-246.	0.1	2
146	Effects of material strength levels and nugget sizes on fatigue behaviour of resistance spot welded steel sheets. Welding International, 2019, 33, 42-54.	0.3	2
147	Nonâ€destructive fatigue damage detection of carbon fiberâ€reinforced thermoplastics using positron annihilation method. Fatigue and Fracture of Engineering Materials and Structures, 0, , .	1.7	2
148	Fatigue Behaviour of Extruded Mg ₂ Si-Reinforced Magnesium Alloy. Key Engineering Materials, 2007, 345-346, 223-226.	0.4	1
149	Effect of Strain-Induced Martensite Transformation on Fatigue Behavior of Prestrained Type 304 Austenitic Stainless Steel. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1591-1597.	0.2	1
150	Fatigue Behaviour of Stainless Steel with HVOF and Atmospheric Plasma Sprayed Alumina Ceramics. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 87-92.	0.2	1
151	Fatigue Test of Small Sized AZ31 Magnesium Alloy Using Micropillar Specimen. Key Engineering Materials, 2012, 525-526, 165-168.	0.4	1
152	Fatigue Crack Propagation Behavior of AZ61 Magnesium Alloy under Controlled Cathodic Potential. Advanced Materials Research, 0, 891-892, 917-922.	0.3	1
153	Fatigue behavior in A6061/AZ31 dissimilar friction stir spot weld made by a scroll grooved tool. Transactions of the JSME (in Japanese), 2014, 80, SMM0352-SMM0352.	0.1	1
154	Microstructural Modification of Non-Combustible Magnesium Alloy by Friction Stir Processing. Materials Science Forum, 0, 880, 25-28.	0.3	1
155	Evaluation of Small Fatigue Crack Initiation in Type 316 Stainless Steel by Positron Annihilation Spectroscopy. Transactions of Japan Society of Spring Engineers, 2016, 2016, 7-12.	0.1	1
156	Confirmation of hot electron preheat with a Cu foam sphere on GEKKO-LFEX laser facility. Physics of Plasmas, 2017, 24, 112709.	0.7	1
157	Fatigue behavior of A5052 aluminum alloy with diamond-like carbon/electroless nickel plating hybrid coating. Mechanical Engineering Letters, 2018, 4, 18-00213-18-00213.	0.2	1
158	Cross tensile and fatigue behavior of zinc-galvanized low carbon steel wire resistance welds. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2019, 37, 35-43.	0.1	1
159	Fatigue design curves for laser-metal-deposited type 420 stainless steel and effect of an interval during deposition process. International Journal of Advanced Manufacturing Technology, 2021, 116, 2917-2927.	1.5	1
160	Non-destructive inspection of welding defects in friction stir welds and prediction of their fatigue life. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2012, 30, 220-227.	0.1	1
161	Effect of casting defects and roller burnishing on fatigue properties of a cast aluminum alloy AC4CH. WIT Transactions on Engineering Sciences, 2013, , .	0.0	1
162	Effect of BN Content and Load Variation on Fatigue Crack Growth Behavior on Si3N4-BN Composite Ceramics. Zairyo/Journal of the Society of Materials Science, Japan, 2004, 53, 1124-1129.	0.1	1

Υοςηιμικό Πεματέα

#	Article	IF	CITATIONS
163	Study on Inclined Fatigue Crack Growth Mechanism by Atomic Force Microscopy. Zairyo/Journal of the Society of Materials Science, Japan, 2004, 53, 627-632.	0.1	1
164	Fatigue behavior of multi-directionally forged commercially pure Ti thin foil with different thickness. The Proceedings of Mechanical Engineering Congress Japan, 2017, 2017, G0300304.	0.0	1
165	Evaluation of Fatigue Damage in Spring Steel SUP10 by Positron Annihilation Spectroscopy. Transactions of Japan Society of Spring Engineers, 2019, 2019, 89-94.	0.1	1
166	Effect of Machining Process Conditions on Fatigue Behavior of Magnesium Alloy AZ61. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 882-889.	0.1	1
167	Non-destructive Observation of Internal Fatigue Crack around the Nugget of Friction Stir Spot Weld Using X-Ray µCT Scan. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 895-901.	0.1	1
168	Creep-Fatigue Interaction in Delamination Crack Propagation of Advanced CFRPs at High Temperatures. , 1997, , 110-132.		1
169	Full and partial compression fatigue tests on welded specimens of steel St 52-3. Effects of the stress ratio on the probabilistic fatigue life estimation. Applications in Engineering Science, 2022, 10, 100091.	0.5	1
170	Fatigue Crack Growth Behavior of Ti-6Al-4V Alloy with Bimodal Microstructure under Constant and Non-stationary Variable Amplitude Load Sequences. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2005, 71, 1160-1166.	0.2	0
171	503 Effect of Prestrain on Fatigue Behavior of Type 316 Stainless Steel. The Proceedings of Conference of Tokai Branch, 2006, 2006.55, 195-196.	0.0	0
172	Fatigue Behaviour of Friction Stir Welded 6061-T6 Aluminium Alloy. , 2006, , 287-288.		0
173	Effect of Powder Size on Fatigue Behaviour in Mg ₂ Si-Dispersed Magnesium Alloys Produced by Solid-State Synthesis. Key Engineering Materials, 2007, 345-346, 315-318.	0.4	0
174	Fatigue Behaviour of Type 444 Stainless Steel at Elevated Temperatures. Key Engineering Materials, 2007, 345-346, 263-266.	0.4	0
175	Fatigue Behaviour of Mg2Si-Particulate Reinforced Magnesium Alloy Composites. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 252-257.	0.2	Ο
176	OS16-4-5 Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2007, 2007.6,OS16-4-5	0.0	0
177	Effect of Strain-Induced Martensitic Transformation on Coaxing Effect of Austenitic Stainless Steels. Key Engineering Materials, 0, 385-387, 505-508.	0.4	0
178	Effect of Extrusion Ratio on Fatigue Behaviour in Mg2Si-Particulate Reinforced Magnesium Alloy Composites. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 459-466.	0.2	0
179	Fatigue Behaviour of Friction Stir Spot Welded Joints with Re-filled Probe Hole in Al-Mg-Si Alloy. , 2008, , 211-218.		0
180	Fatigue Behavior of A356 Cast Aluminum Alloy Microstructurally Modified by Friction Stir Processing under Low Strain Rate Condition. Key Engineering Materials, 2012, 525-526, 169-172.	0.4	0

#	Article	IF	CITATIONS
181	Fatigue Properties of Solution-Treated Type 304 Stainless Steel after Nitriding. Key Engineering Materials, 0, 525-526, 217-220.	0.4	0
182	Effect of Laves Phase Precipitation on Fatigue Behavior of Austenitic Stainless Steel Type 347 in Laboratory Air and in 3%NaCl Solution. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 239-248.	0.2	0
183	Crack Initiation Analysis in AZ31 Magnesium Alloy Based on Electron Backscatter Diffraction (EBSD). , 2014, 3, 790-792.		0
184	High Cycle Fatigue Properties of Multi-Directionally Forged Commercial Purity Grade 2 Ti Plate. Materials Science Forum, 2018, 916, 166-169.	0.3	0
185	Influences of continuous casting and extruding direction on fatigue strength of Al-Si eutectic alloy. Transactions of the JSME (in Japanese), 2021, 87, 21-00156-21-00156.	0.1	0
186	Effect of aging treatment on fatigue behavior of Nb-added ferritic stainless steel type 429 welds in 3% NaCl solution. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2021, 39, 158-162.	0.1	0
187	Discrete Dislocation Dynamics Study of Dislocation Movement in Cyclic Deformation Region near Fatigue Crack Tip. The Proceedings of the JSME Annual Meeting, 2000, 2000.1, 35-36.	0.0	0
188	913 Microscopic Observation of Fatigue Crack Growth Behavior in Silicon Nitride. The Proceedings of Conference of Kansai Branch, 2000, 2000.75, _9-259-26	0.0	0
189	112 Effect of Porosity and Worked Layer on Growth Behavior of Small Fatigue Crack in Fe-0.5Ni-1Mo Sintered Steels. The Proceedings of Conference of Kansai Branch, 2000, 2000.75, _1-231-24	0.0	0
190	Fatigue Crack Growth Behavior in Silicon Nitride under Constant and Variable Amplitude Load Sequences. Zairyo/Journal of the Society of Materials Science, Japan, 2000, 49, 116-122.	0.1	0
191	Mixed Mode Delamination Creep Crack Growth of Unidirectionally Reinforced AS4/PEEK Laminate at Elevated Temperature Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50, 1255-1261.	0.1	0
192	243 AFM observation of fatigue crack branching and deflection behavior in the low growth rate region. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2001, 2001, 201-202.	0.0	0
193	In situ observation of fatigue crack growth behavior under low growth rate region in α-brass using AFM. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 647-648.	0.0	0
194	Effect of Frequency Ratio on Crack Growth Behavior in Silicon Nitride under Repeated Two-step Loading. The Proceedings of Conference of Kansai Branch, 2002, 2002.77, _8-118-12	0.0	0
195	Initiation and Growth Behavior of Small Fatigue Crack in Fine-grained P/M Aluminum Alloys. The Proceedings of Conference of Kansai Branch, 2002, 2002.77, _8-98-10	0.0	0
196	Expansion of Discrete Dislocation Dynamics Simulation into Fatigue Crack Propagation. The Proceedings of Conference of Kansai Branch, 2002, 2002.77, _2-292-30	0.0	0
197	AFM Observation of Slip Deformation near Fatigue Crack Tip in Grain Oriented 3% Silicon Iron. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 649-650.	0.0	0
198	Discrete Dislocation Dynamics Analysis of Cyclic Plastic Deformation near Growing Fatigue Crack Tip. The Proceedings of the Computational Mechanics Conference, 2002, 2002.15, 141-142.	0.0	0

#	Article	IF	CITATIONS
199	AFM Observation of Fatigue Crack Growth Deflection and Branching Behavior in $\hat{I}\pm$ -Brass. The Proceedings of the JSME Annual Meeting, 2002, 2002.2, 405-406.	0.0	0
200	AFM Observation of Fatigue Crack Growth Behavior in $\hat{l}\pm$ -Brass. The Proceedings of Conference of Kansai Branch, 2002, 2002.77, _2-472-48	0.0	0
201	Discrete Dislocation Analysis of Fatigue Crack Kinking Behavior. The Proceedings of Conference of Kansai Branch, 2003, 2003.78, _3-133-14	0.0	0
202	Cyclic fatigue crack growth tests in silicon nitride using a small bending specimen with a micro notch. The Proceedings of Conference of Kansai Branch, 2003, 2003.78, _2-212-22	0.0	0
203	Effect of micro structure on initiation and growth behavior of small fatigue cracks in ultra fine-grained P/M Aluminum alloys. The Proceedings of Conference of Kansai Branch, 2003, 2003.78, _1-71-8	0.0	0
204	Observation of Fatigue Crack Growth Behavior in α-brass by means of an In-situ Observation System based on an Atomic Force Microscope. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2003, 2003, 301-302.	0.0	0
205	Discrete Dislocation Analysis of Fatigue Crack Growth Behavior under Variable Amplitude Load Sequences. The Proceedings of the Computational Mechanics Conference, 2003, 2003.16, 429-430.	0.0	0
206	Fatigue Crack Growth Behavior of Ti-6Al-4V Alloy under Variable Amplitude Load Sequences. The Proceedings of Conference of Kansai Branch, 2003, 2003.78, _2-172-18	0.0	0
207	Fatigue Crack Growth Behavior in Ultra Fine-grained P/M Aluminum Alloy under Repeated Two-step Variable Amplitude Load Sequences. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2004, 2004, 329-330.	0.0	0
208	Discrete Dislocation Analysis of Fatigue Crack Growth Behavior under Variable Amplitude Loading. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2004, 2004, 327-328.	0.0	0
209	Report of ECF16. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 1056.	0.1	0
210	1045 Effect of Ageing Treatment on Fatigue Behaviour of AZ80 Wrought Magnesium Alloy. The Proceedings of the JSME Annual Meeting, 2008, 2008.6, 179-180.	0.0	0
211	The First Japan-China Joint Symposium on Fatigue of Engineering Materials and Structures. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 186.	0.1	0
212	509 Fatigue behavior in similar friction stir spot welds of A6061 and AZ31 sheets welded by a scroll grooved tool. The Proceedings of the Materials and Processing Conference, 2010, 2010.18, _509-1509-3	0.0	0
213	Effect of σ-phase Embrittlement on Fatigue Behavior in High-Chromium Ferritic Stainless Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 879-884.	0.1	0
214	OS12F012 Fatigue Crack Propagation Behavior of AZ61 Extruded Magnesium Alloy under Controlled Humidity. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS12F012OS12F012	0.0	0
215	OS12-4-1 Fatigue Crack Propagation Behavior of AZ61 Extruded Magnesium Alloy under Controlled Humidity. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS12-4-1	0.0	0
216	OS1512 Fatigue crack propagation behaviour of AZ61 magnesium alloy under controlled cathodic potential. The Proceedings of the Materials and Mechanics Conference, 2013, 2013,OS1512-1OS1512-3	0.0	0

#	Article	IF	CITATIONS
217	Effect of interlayer thickness on fatigue behavior in A5052 aluminum alloy with DLC/thermally sprayed WC-12Co hybrid coatings. , 2013, , .		Ο
218	Fatigue behavior of Ti-15Mo-5Zr-3Al \hat{l}^2 -type titanium alloy with surface hardened layer induced by annealing in nitrogen gas. WIT Transactions on Engineering Sciences, 2013, , .	0.0	0
219	OS2107 Effect of welding condition on fatigue behavior in friction stir welded Al-Mg-Sc alloy. The Proceedings of the Materials and Mechanics Conference, 2014, 2014, _OS2107-1OS2107-3	0.0	Ο
220	Effect of pile-ups of dislocations in numerical analysis of fatigue crack propagation using discrete dislocations method. , 2014, , 279-283.		0
221	Effect of Crack Shielding due to Fiber Bridging on Delamination Propagation of AS4/PEEK Laminates in High Temperature Fatigue Zairyo/Journal of the Society of Materials Science, Japan, 1995, 44, 762-768.	0.1	0
222	Fatigue Crack Growth Behavior of Silicon Nitride under Constant and Non-Stationary Variable Amplitude Loadings Zairyo/Journal of the Society of Materials Science, Japan, 1997, 46, 1077-1082.	0.1	0
223	Fatigue Crack Growth Behavior of Silicon Nitride under Repeated Two-Step Loadings Zairyo/Journal of the Society of Materials Science, Japan, 1997, 46, 1409-1414.	0.1	0
224	OS8-23 Joint Microstructure and Fatigue Behavior of Ferritic Stainless Steel Type 430 Welds with Different Filler Metals(Joining,OS8 Fatigue and fracture mechanics,STRENGTH OF MATERIALS). The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015, 2015.14, 133.	0.0	0
225	OS0104-177 Crystallographic analysis of fatigue behavior in magnesium alloy using micro cantilever specimen. The Proceedings of the Materials and Mechanics Conference, 2015, 2015,	0.0	Ο
226	EBSD-assisted fractographic analysis of crack paths in magnesium alloy. Frattura Ed Integrita Strutturale, 2016, , .	0.5	0
227	EBSD-assisted fractography of subsurface crack initiation site in high cycle fatigue fracture of ultrasonic shot peened I ² titanium alloy. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, OS02-14.	0.0	0
228	Characteristics of Keyhole Refill Process using Friction Stir Spot Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2016, 34, 159-166.	0.1	0
229	Fatigue Behavior of Magnesium Alloy with Diamond-Like Carbon/Nickel Plating Hybrid Coating in Laboratory Air and Corrosive Environment. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 875-881.	0.1	0
230	Effect of Fabrication Processes on Fatigue Strength and Small Fatigue Crack Growth Behavior of A6061 and Al-Si Eutectic Alloys. Zairyo/Journal of the Society of Materials Science, Japan, 2022, 71, 532-539.	0.1	0