
Jean-Christophe M Monbaliu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/917370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science, 2016, 352, 61-67.	12.6	751
2	Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chemical Reviews, 2019, 119, 7328-7443.	47.7	367
3	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	47.7	222
4	Continuous Flow Organic Chemistry: Successes and Pitfalls at the Interface with Current Societal Challenges. European Journal of Organic Chemistry, 2018, 2018, 2301-2351.	2.4	188
5	Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chemistry, 2019, 377, 1.	5.8	104
6	Scalable Photocatalytic Oxidation of Methionine under Continuous-Flow Conditions. Organic Process Research and Development, 2017, 21, 1435-1438.	2.7	79
7	Electron-deficient 1- and 2-azabuta-1,3-dienes: a comprehensive survey of their synthesis and reactivity. Chemical Society Reviews, 2011, 40, 4708.	38.1	76
8	New benzotriazole-based reagents for the phosphonylation of various N-, O-, and S-nucleophiles. Tetrahedron Letters, 2014, 55, 5898-5901.	1.4	62
9	Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Organic Process Research and Development, 2019, 23, 78-87.	2.7	52
10	Accelerating chemoselective peptide bond formation using bis(2-selenylethyl)amido peptide selenoester surrogates. Chemical Science, 2016, 7, 2657-2665.	7.4	45
11	Effective production of the biodiesel additive STBE by a continuous flow process. Bioresource Technology, 2011, 102, 9304-9307.	9.6	41
12	Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chemical Communications, 2012, 48, 11601.	4.1	41
13	The deoxydehydration (DODH) reaction: a versatile technology for accessing olefins from bio-based polyols. Green Chemistry, 2020, 22, 4801-4848.	9.0	41
14	Revisiting the deoxydehydration of glycerol towards allyl alcohol under continuous-flow conditions. Green Chemistry, 2017, 19, 3006-3013.	9.0	40
15	Continuous flow upgrading of glycerol toward oxiranes and active pharmaceutical ingredients thereof. Green Chemistry, 2019, 21, 4422-4433.	9.0	39
16	Expedient preparation of active pharmaceutical ingredient ketamine under sustainable continuous flow conditions. Green Chemistry, 2019, 21, 2952-2966.	9.0	38
17	Accelerated microfluidic native chemical ligation at difficult amino acids toward cyclic peptides. Nature Communications, 2018, 9, 2847.	12.8	35
18	Compact and Integrated Approach for Advanced End-to-End Production, Purification, and Aqueous Formulation of Lidocaine Hydrochloride. Organic Process Research and Development, 2016, 20, 1347-1353.	2.7	34

#	Article	IF	CITATIONS
19	Sorption and pervaporation study of methanol/dimethyl carbonate mixture with poly(etheretherketone) (PEEK-WC) membrane. Journal of Membrane Science, 2018, 567, 303-310.	8.2	32
20	Improving Continuous Flow Singlet Oxygen Photooxygenation Reactions with Functionalized Mesoporous Silica Nanoparticles. ChemPhotoChem, 2018, 2, 890-897.	3.0	31
21	A safe and compact flow platform for the neutralization of a mustard gas simulant with air and light. Green Chemistry, 2020, 22, 4105-4115.	9.0	31
22	Assessing inter- and intramolecular continuous-flow strategies towards methylphenidate (Ritalin) hydrochloride. Reaction Chemistry and Engineering, 2017, 2, 149-158.	3.7	30
23	Long-Range Intramolecular S → N Acyl Migration: A Study of the Formation of Native Peptide Analogues via 13-, 15-, and 16-Membered Cyclic Transition States. Journal of Organic Chemistry, 2012, 77, 2637-2648.	3.2	28
24	Continuous-Flow Preparation of γ-Butyrolactone Scaffolds from Renewable Fumaric and Itaconic Acids under Photosensitized Conditions. Organic Process Research and Development, 2017, 21, 2012-2017.	2.7	28
25	Supported ionic liquid membranes for the separation of methanol/dimethyl carbonate mixtures by pervaporation. Journal of Membrane Science, 2020, 598, 117790.	8.2	28
26	Straightforward hetero Diels–Alder reactions of nitroso dienophiles by microreactor technology. Tetrahedron Letters, 2010, 51, 5830-5833.	1.4	27
27	[4 + 2] Cycloadditions of 1-Phosphono-1,3-butadienes with Nitroso Heterodienophiles: A Versatile Synthetic Route for Polyfunctionalized Aminophosphonic Derivatives. Journal of Organic Chemistry, 2010, 75, 5478-5486.	3.2	27
28	A convenient synthesis of difficult medium-sized cyclic peptides by Staudinger mediated ring-closure. Organic and Biomolecular Chemistry, 2012, 10, 8055.	2.8	27
29	Solvent-free organocatalytic preparation of cyclic organic carbonates under scalable continuous flow conditions. Reaction Chemistry and Engineering, 2019, 4, 17-26.	3.7	26
30	Versatile and scalable synthesis of cyclic organic carbonates under organocatalytic continuous flow conditions. Catalysis Science and Technology, 2019, 9, 6841-6851.	4.1	23
31	[4+2] Cycloaddition of 1-phosphono-1,3-butadiene with azo- and nitroso-heterodienophiles. Tetrahedron Letters, 2008, 49, 1839-1842.	1.4	22
32	Continuousâ€Flow Nâ€Heterocyclic Carbene Generation and Organocatalysis. Chemistry - A European Journal, 2016, 22, 4508-4514.	3.3	22
33	A versatile biobased continuous flow strategy for the production of 3-butene-1,2-diol and vinyl ethylene carbonate from erythritol. Green Chemistry, 2018, 20, 5147-5157.	9.0	22
34	Scalable and robust photochemical flow process towards small spherical gold nanoparticles. Reaction Chemistry and Engineering, 2020, 5, 1224-1236.	3.7	21
35	Novel chiral 1-phosphono-1,3-butadiene for asymmetric hetero Diels–Alder cycloadditions with nitroso and azodicarboxylate dienophiles. Tetrahedron Letters, 2010, 51, 1052-1055.	1.4	20
36	Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry, 2020, 2020, 5236-5277.	2.4	19

#	Article	IF	CITATIONS
37	A New Benzotriazoleâ€Mediated Stereoflexible Gateway to Heteroâ€2,5â€diketopiperazines. Chemistry - A European Journal, 2012, 18, 2632-2638.	3.3	18
38	Development, optimization and scale-up of biodiesel production from crude palm oil and effective use in developing countries. Biomass and Bioenergy, 2013, 56, 62-69.	5.7	18
39	Governing Parameters of Long-Range Intramolecular <i>S</i> -to- <i>N</i> Acyl Transfers within (<i>S</i>)-Acyl Isopeptides. Journal of Chemical Theory and Computation, 2013, 9, 927-934.	5.3	16
40	Continuous-flow thermolysis for the preparation of vinylglycine derivatives. Organic and Biomolecular Chemistry, 2015, 13, 11602-11606.	2.8	15
41	Flow neutralisation of sulfur-containing chemical warfare agents with Oxone: packed bed <i>vs.</i> aqueous solution. Green Chemistry, 2021, 23, 2925-2930.	9.0	15
42	Exploring the Fundamentals of Microreactor Technology with Multidisciplinary Lab Experiments Combining the Synthesis and Characterization of Inorganic Nanoparticles. Journal of Chemical Education, 2017, 94, 775-780.	2.3	14
43	A modular, low footprint and scalable flow platform for the expedient α-aminohydroxylation of enolizable ketones. Green Chemistry, 2021, 23, 2336-2351.	9.0	14
44	Application of pervaporation in the bio-production of glycerol carbonate. Chemical Engineering and Processing: Process Intensification, 2018, 132, 127-136.	3.6	13
45	Au nanobipyramids@mSiO ₂ core–shell nanoparticles for plasmon-enhanced singlet oxygen photooxygenations in segmented flow microreactors. Nanoscale Advances, 2020, 2, 5280-5287.	4.6	12
46	Separation of bioâ€based chemicals using pervaporation. Journal of Chemical Technology and Biotechnology, 2020, 95, 2311-2334.	3.2	12
47	Perspectives for the Upgrading of Bioâ€Based Vicinal Diols within the Developing European Bioeconomy. ChemSusChem, 2022, 15, .	6.8	12
48	Efficient Synthesis of 2,5-Diketopiperazines by Staudinger-Mediated Cyclization. Synlett, 2012, 23, 2337-2340.	1.8	11
49	Three decades of unveiling the complex chemistry of <i>C</i> -nitroso species with computational chemistry. Organic Chemistry Frontiers, 2021, 9, 223-264.	4.5	11
50	A continuous flow generator of organic hypochlorites for the neutralization of chemical warfare agent simulants. Green Chemistry, 2022, 24, 3167-3179.	9.0	11
51	Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water. Talanta, 2022, 249, 123640.	5.5	11
52	(R)-4-phenyloxazolidin-2-thione: an efficient chiral auxiliary for [4+2] cycloaddition of 1-aminodiene and activated phosphonodienophiles. Tetrahedron Letters, 2009, 50, 1314-1317.	1.4	10
53	Understanding chemical interaction between phosphonate-derivative molecules and a silver surface cluster in SERS: a combined experimental and computational approach. Physical Chemistry Chemical Physics, 2019, 21, 22180-22187.	2.8	9
54	Radical C–H 18F-Difluoromethylation of Heteroarenes with [18F]Difluoromethyl Heteroaryl-Sulfones by Visible Light Photoredox Catalysis. Catalysts, 2020, 10, 275.	3.5	9

#	Article	IF	CITATIONS
55	ls anthracene cofactor or spectator for the thermolysis of anthracenyl acylnitroso cycloadducts in the presence of a diene?. Tetrahedron Letters, 2009, 50, 2555-2558.	1.4	8
56	HDA cycloadditions of 1-diethoxyphosphonyl-1,3-butadiene with nitroso heterodienophiles: A computational investigation. Computational and Theoretical Chemistry, 2010, 959, 49-54.	1.5	8
57	NMR and X-ray diffraction analysis of 3-thioamido-5-phosphono-1-cyclohexene derivatives: Conformational and stereochemical assignments. Journal of Molecular Structure, 2008, 879, 113-118.	3.6	7
58	Metal-free hydroxylation of tertiary ketones under intensified and scalable continuous flow conditions. Journal of Flow Chemistry, 2020, 10, 167-179.	1.9	7
59	En route towards α-benzotriazoyl nitroso derivatives. RSC Advances, 2012, 2, 8941.	3.6	6
60	Preparation, Reactivity, and Synthetic Utility of Simple Benzotriazole Derivatives. Topics in Heterocyclic Chemistry, 2015, , 1-66.	0.2	6
61	Efficient continuous-flow benzotriazole activation and coupling of amino acids. Journal of Flow Chemistry, 2015, 5, 220-227.	1.9	6
62	Solubility Determination and Correlation of Warfarin Sodium 2-Propanol Solvate in Pure, Binary, and Ternary Solvent Mixtures. Journal of Chemical & Engineering Data, 2019, 64, 1399-1413.	1.9	6
63	Reactivity of (R)-4-Phenyloxazolidin-2-thione Chiral Auxiliary: From Deprotection to Heterocyclic Interconversion. Heterocycles, 2008, 75, 2459.	0.7	5
64	A Practical Synthesis of 3-Diethoxyphosphoryl-1,2-pyridazine Derivatives. Synthesis, 2009, 2009, 1876-1880.	2.3	5
65	User Friendly and Flexible Kiliani Reaction on Ketoses Using Microreaction Technology. Journal of Flow Chemistry, 2012, 2, 43-46.	1.9	5
66	Feruloylbenzotriazole and Weinreb Amide as Bioinspired Building Blocks: A Reactivity Study towards O― N― S― and Câ€Nucleophiles. European Journal of Organic Chemistry, 2014, 2014, 2594-2611.	2.4	5
67	Continuous flow organocatalyzed methoxycarbonylation of benzyl alcohol derivatives with dimethyl carbonate. Journal of Flow Chemistry, 2022, 12, 207-217.	1.9	4
68	Capture of benzotriazole-based Mannich electrophiles by CH-acidic compounds. RSC Advances, 2013, 3, 4152.	3.6	3
69	Multistep Continuous-Flow Processes for the Preparation of Heterocyclic Active Pharmaceutical Ingredients. Topics in Heterocyclic Chemistry, 2018, , 1-102.	0.2	3
70	Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chemistry Collections, 2020, , 111-145.	0.5	3
71	Development of a sustainable continuous flow approach toward allantoin. Journal of Flow Chemistry, 2020, 10, 251-257.	1.9	3
72	A multifaceted approach towards understanding the peculiar behavior of (α)-hydroxyiminophosphonates. Organic Chemistry Frontiers, 2021, 9, 173-182.	4.5	3

#	Article	IF	CITATIONS
73	Out-smarting smart drug modafinil through flow chemistry. Green Chemistry, 2022, 24, 2094-2103.	9.0	3
74	Intensified Continuous Flow Michaelis–Arbuzov Rearrangement toward Alkyl Phosphonates. Organic Process Research and Development, 0, , .	2.7	3
75	9. Safety aspects related to microreactor technology. , 2014, , 253-282.		Ο
76	Flow Chemistry Is a Game Changer. ChemistryViews, 0, , .	0.0	0