
Luis M Cintas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9173557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Draft Genome Sequence of Lactococcus lactis Subsp. cremoris WA2-67: A Promising Nisin-Producing Probiotic Strain Isolated from the Rearing Environment of a Spanish Rainbow Trout (Oncorhynchus) Tj ETQq1 1	0.7 86 314 r	g B T /Overloo
2	Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. LWT - Food Science and Technology, 2022, 162, 113496.	2.5	6
3	Draft Genome Sequence of Weissella cibaria P71, a Promising Aquaculture Probiotic Strain Isolated from Common Octopus (Octopus vulgaris). Microbiology Resource Announcements, 2021, 10, e0079221.	0.3	1
4	Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantariusÂLP90. PLoS ONE, 2020, 15, e0229417.	1.1	7
5	Title is missing!. , 2020, 15, e0229417.		0
6	Title is missing!. , 2020, 15, e0229417.		0
7	Title is missing!. , 2020, 15, e0229417.		0
8	Title is missing!. , 2020, 15, e0229417.		0
9	Biotechnological potential and in vitro safety assessment of Lactobacillus curvatus BCS35, a multibacteriocinogenic strain isolated from dry-salted cod (Gadus morhua). LWT - Food Science and Technology, 2019, 112, 108219.	2.5	3
10	CK11, a Teleost Chemokine with a Potent Antimicrobial Activity. Journal of Immunology, 2019, 202, 857-870.	0.4	40
11	Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class lla bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Research International, 2019, 121, 888-899.	2.9	17
12	Evaluation of bacteriocinogenic activity, safety traits and biotechnological potential of fecal lactic acid bacteria (LAB), isolated from Griffon Vultures (Gyps fulvus subsp. fulvus). BMC Microbiology, 2016, 16, 228.	1.3	12
13	Draft Genome Sequence of the Bacteriocinogenic Strain <i>Enterococcus faecalis</i> DBH18, Isolated from Mallard Ducks (<i>Anas platyrhynchos</i>). Genome Announcements, 2016, 4, .	0.8	2
14	Characterization of Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus) Tj ETQq0 0 0 rg Organisms, 2016, 119, 129-143.	BT /Overloc 0.5	k 10 Tf 50 2 29
15	Draft Genome Sequence of the Bacteriocin-Producing Strain <i>Enterococcus faecium</i> M3K31, Isolated from Griffon Vultures (<i>Gyps fulvus</i> subsp. <i>fulvus</i>). Genome Announcements, 2016, 4, .	0.8	6
16	Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. International Journal of Food Microbiology, 2016, 223, 41-49.	2.1	62
17	Safety assessment and molecular genetic profiling by pulsed-field gel electrophoresis (PFGE) and PCR-based techniques of Enterococcus faecium strains of food origin. LWT - Food Science and Technology, 2016, 65, 357-362.	2.5	10
18	Cloning and Expression of Synthetic Genes Encoding the Broad Antimicrobial Spectrum Bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by RecombinantPichia pastoris. BioMed Research International, 2015, 2015, 1-11.	0.9	16

LUIS M CINTAS

#	Article	IF	CITATIONS
19	Bacteriocin production by lactic acid bacteria isolated from fish, seafood and fish products. European Food Research and Technology, 2015, 241, 341-356.	1.6	26
20	Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microbial Cell Factories, 2015, 14, 166.	1.9	38
21	Evaluation of <i>Enterococcus</i> spp. from Rainbow Trout (<i>Oncorhynchus mykiss</i> , Walbaum), Feed, and Rearing Environment Against Fish Pathogens. Foodborne Pathogens and Disease, 2015, 12, 311-322.	0.8	26
22	Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. European Food Research and Technology, 2015, 241, 647-662.	1.6	12
23	Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes. Fish and Shellfish Immunology, 2015, 44, 214-223.	1.6	25
24	Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae. Marine Biotechnology, 2015, 17, 820-830.	1.1	21
25	Solution Structure of Enterocin HF, an Antilisterial Bacteriocin Produced by <i>Enterococcus faecium</i> M3K31. Journal of Agricultural and Food Chemistry, 2015, 63, 10689-10695.	2.4	17
26	Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss , Walbaum) and rearing environment. Anaerobe, 2015, 32, 7-14.	1.0	42
27	Controlled enterolysin A-mediated lysis and production of angiotensin converting enzyme-inhibitory bovine skim milk hydrolysates by recombinant Lactococcus lactis. International Dairy Journal, 2014, 34, 100-103.	1.5	3
28	Use of Synthetic Genes for Cloning, Production and Functional Expression of the Bacteriocins Enterocin A and Bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis. Molecular Biotechnology, 2014, 56, 571-583.	1.3	18
29	Individual variability in fingerâ€ŧoâ€finger transmission efficiency of Enterococcus faecium clones. MicrobiologyOpen, 2014, 3, 128-132.	1.2	9
30	InÂvitro and inÂvivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (Scophthalmus maximus L.) farming. Fish and Shellfish Immunology, 2014, 41, 570-580.	1.6	65
31	Genetic and Biochemical Evidence That Recombinant <i>Enterococcus</i> spp. Strains Expressing Gelatinase (GelE) Produce Bovine Milk-Derived Hydrolysates with High Angiotensin Converting Enzyme-Inhibitory Activity (ACE-IA). Journal of Agricultural and Food Chemistry, 2014, 62, 5555-5564.	2.4	11
32	Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 977-993.	1.4	23
33	Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology, 2013, 13, 15.	1.3	168
34	Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. International Journal of Food Microbiology, 2013, 166, 93-101.	2.1	33
35	Cloning, Production, and Functional Expression of the Bacteriocin Enterocin A, Produced by Enterococcus faecium T136, by the Yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans. Applied and Environmental Microbiology, 2012, 78, 5956-5961.	1.4	32

Natural and Heterologous Production of Bacteriocins. , 2011, , 115-143.

LUIS M CINTAS

#	Article	IF	CITATIONS
37	Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. Journal of Biotechnology, 2011, 156, 76-86.	1.9	46
38	Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. International Journal of Food Microbiology, 2011, 146, 212-216.	2.1	34
39	Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Applied Microbiology and Biotechnology, 2011, 89, 131-143.	1.7	36
40	Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology (United Kingdom), 2011, 157, 3256-3267.	0.7	104
41	Characterization of Garvicin ML, a Novel Circular Bacteriocin Produced by <i>Lactococcus garvieae</i> DCC43, Isolated from Mallard Ducks (<i>Anas platyrhynchos</i>). Applied and Environmental Microbiology, 2011, 77, 369-373.	1.4	98
42	Identification of Bacteriocin Genes in Enterococci Isolated from Game Animals and Saltwater Fish. Journal of Food Protection, 2011, 74, 1252-1260.	0.8	19
43	Antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. of human and animal origin isolated in Portugal. Archives of Microbiology, 2010, 192, 927-936.	1.0	28
44	Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50. Applied and Environmental Microbiology, 2010, 76, 3314-3324.	1.4	44
45	Development of Bacteriocinogenic Strains of <i>Saccharomyces cerevisiae</i> Heterologously Expressing and Secreting the Leaderless Enterocin L50 Peptides L50A and L50B from <i>Enterococcus faecium</i> L50. Applied and Environmental Microbiology, 2009, 75, 2382-2392.	1.4	27
46	Antimicrobial activity of Enterococcus faecium L50, a strain producing enterocins L50 (L50A and L50B), P and Q, against beer-spoilage lactic acid bacteria in broth, wort (hopped and unhopped), and alcoholic and non-alcoholic lager beers. International Journal of Food Microbiology, 2008, 125, 293-307.	2.1	41
47	Molecular analysis of the replication region of the pCIZ2 plasmid from the multiple bacteriocin producer strain Enterococcus faecium L50. Plasmid, 2008, 60, 181-189.	0.4	4
48	Cloning and Heterologous Production of Hiracin JM79, a Sec-Dependent Bacteriocin Produced by <i>Enterococcus hirae</i> DCH5, in Lactic Acid Bacteria and <i>Pichia pastoris</i> . Applied and Environmental Microbiology, 2008, 74, 2471-2479.	1.4	52
49	Chimeras of Mature Pediocin PA-1 Fused to the Signal Peptide of Enterocin P Permits the Cloning, Production, and Expression of Pediocin PA-1 in Lactococcus lactis. Journal of Food Protection, 2007, 70, 2792-2798.	0.8	18
50	Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced byEnterococcus hiraeDCH5, isolated from Mallard ducks (Anas) Tj ETQqC	00 ng/BT /C)versloock 10 Tf
51	Antimicrobial and safety aspects, and biotechnological potential of bacteriocinogenic enterococci isolated from mallard ducks (Anas platyrhynchos). International Journal of Food Microbiology, 2007, 117, 295-305.	2.1	46
52	Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Applied Microbiology and Biotechnology, 2007, 76, 667-675.	1.7	34
53	Genes Encoding Bacteriocins and Their Expression and Potential Virulence Factors of Enterococci Isolated from Wood Pigeons (Columba palumbus). Journal of Food Protection, 2006, 69, 520-531.	0.8	40
54	Purification and sequencing of cerein 7B, a novel bacteriocin produced byBacillus cereusBc7. FEMS Microbiology Letters, 2006, 254, 108-115.	0.7	32

LUIS M CINTAS

#	Article	IF	CITATIONS
55	High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis. Applied Microbiology and Biotechnology, 2006, 72, 41-51.	1.7	44
56	Complete Sequence of the Enterocin Q-Encoding Plasmid pCIZ2 from the Multiple Bacteriocin Producer Enterococcus faecium L50 and Genetic Characterization of Enterocin Q Production and Immunity. Applied and Environmental Microbiology, 2006, 72, 6653-6666.	1.4	45
57	Immunochemical Characterization of Temperature-Regulated Production of Enterocin L50 (EntL50A) Tj ETQq1 1 Microbiology, 2006, 72, 7634-7643.	0.784314 1.4	4 rgBT /Overlo 35
58	Cloning, production and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. International Journal of Food Microbiology, 2005, 103, 239-250.	2.1	49
59	Heterologous extracellular production of enterocin P fromEnterococcus faeciumP13 in the methylotrophic bacteriumMethylobacterium extorquens. FEMS Microbiology Letters, 2005, 248, 125-131.	0.7	27
60	Production of Enterocin P, an Antilisterial Pediocin-Like Bacteriocin from Enterococcus faecium P13, in Pichia pastoris. Antimicrobial Agents and Chemotherapy, 2005, 49, 3004-3008.	1.4	43
61	Performance and Applications of Polyclonal Antipeptide Antibodies Specific for the Enterococcal Bacteriocin Enterocin P. Journal of Agricultural and Food Chemistry, 2004, 52, 2247-2255.	2.4	24
62	Genetics of Bacteriocin Production in Lactic Acid Bacteria. , 2003, , 225-260.		3
63	Enterocin P Causes Potassium Ion Efflux from Enterococcus faecium T136 Cells. Antimicrobial Agents and Chemotherapy, 2001, 45, 901-904.	1.4	37
64	Biochemical and Genetic Evidence that Enterococcus faecium L50 Produces Enterocins L50A and L50B, the sec -Dependent Enterocin P, and a Novel Bacteriocin Secreted without an N-Terminal Extension Termed Enterocin Q. Journal of Bacteriology, 2000, 182, 6806-6814.	1.0	238
65	Biochemical and Genetic Evidence of Enterocin P Production by Two Enterococcus faecium -Like Strains Isolated from Fermented Sausages. Current Microbiology, 1999, 39, 282-290.	1.0	40
66	Antibodies to a synthetic 1–9-N-terminal amino acid fragment of mature pediocin PA-1: sensitivity and specificity for pediocin PA-1 and cross-reactivity against Class IIa bacteriocins. Microbiology (United) Tj ETQq0 0	0 n gB 7T /O	ver la ck 10 Tf :
67	Enterocins L50A and L50B, Two Novel Bacteriocins from <i>Enterococcus faecium</i> L50, Are Related to Staphylococcal Hemolysins. Journal of Bacteriology, 1998, 180, 1988-1994.	1.0	256
68	Generation of Polyclonal Antibodies of Predetermined Specificity against Pediocin PA-1. Applied and Environmental Microbiology, 1998, 64, 4536-4545.	1.4	30

69 Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology (United Kingdom), 1997, 143, 2287-2294.