A Amirteimoori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9173462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-stage network structures with undesirable outputs: A DEA based approach. Measurement: Journal of the International Measurement Confederation, 2014, 48, 109-118.	2.5	106
2	Allocating fixed costs and target setting: A dea-based approach. Applied Mathematics and Computation, 2005, 171, 136-151.	1.4	71
3	A Euclidean distance-based measure of efficiency in data envelopment analysis. Optimization, 2010, 59, 985-996.	1.0	69
4	Resource allocation and target setting in data envelopment analysis. Expert Systems With Applications, 2010, 37, 3036-3039.	4.4	65
5	Multi-component performance, progress and regress measurement and shared inputs and outputs in DEA for panel data: an application in commercial bank branches. Applied Mathematics and Computation, 2004, 151, 1-16.	1.4	49
6	Flexible measures in production process: A DEA-based approach. RAIRO - Operations Research, 2011, 45, 63-74.	1.0	47
7	A DEA two-stage decision processes with shared resources. Central European Journal of Operations Research, 2013, 21, 141-151.	1.1	46
8	Slacks-based measures of efficiency in imprecise data envelopment analysis: An approach based on data envelopment analysis with double frontiers. Computers and Industrial Engineering, 2015, 79, 42-51.	3.4	39
9	Data envelopment analysis in dynamic framework. Applied Mathematics and Computation, 2006, 181, 21-28.	1.4	36
10	Classifying flexible measures in data envelopment analysis: A slack-based measure. Measurement: Journal of the International Measurement Confederation, 2013, 46, 4100-4107.	2.5	35
11	Modeling undesirable factors in data envelopment analysis. Applied Mathematics and Computation, 2006, 180, 444-452.	1.4	34
12	Optimal input/output reduction in production processes. Decision Support Systems, 2012, 52, 742-747.	3.5	33
13	Measuring the multi-component efficiency with shared inputs and outputs in data envelopment analysis. Applied Mathematics and Computation, 2004, 155, 283-293.	1.4	32
14	An extended transportation problem: a DEA-based approach. Central European Journal of Operations Research, 2011, 19, 513-521.	1.1	30
15	Un-desirable factors in multi-component performance measurement. Applied Mathematics and Computation, 2005, 171, 721-729.	1.4	28
16	Ranking of decision making units in data envelopment analysis: A distance-based approach. Applied Mathematics and Computation, 2005, 171, 122-135.	1.4	27
17	DEA efficiency analysis: Efficient and anti-efficient frontier. Applied Mathematics and Computation, 2007, 186, 10-16.	1.4	24
18	Inputs and outputs classification in integer-valued data envelopment analysis. Measurement: Journal of the International Measurement Confederation, 2019, 139, 317-325.	2.5	24

#	Article	IF	CITATIONS
19	Production planning in data envelopment analysis. International Journal of Production Economics, 2012, 140, 212-218.	5.1	23
20	Context-based competition strategy and performance analysis with fixed-sum outputs: an application to banking sector. Journal of the Operational Research Society, 2017, 68, 1461-1469.	2.1	22
21	Variables reduction in data envelopment analysis. Optimization, 2014, 63, 735-745.	1.0	20
22	Efficient surfaces and an efficiency index in DEA: a constant returns to scale. Applied Mathematics and Computation, 2005, 163, 683-691.	1.4	19
23	Measuring the efficiency of interdependent decision making sub-units in DEA. Applied Mathematics and Computation, 2006, 173, 847-855.	1.4	18
24	Characterizing an equitable omission of shared resources: A DEA-based approach. Applied Mathematics and Computation, 2006, 177, 18-23.	1.4	18
25	Additive models for network data envelopment analysis in the presence of shared resources. Transportation Research, Part D: Transport and Environment, 2016, 48, 411-424.	3.2	18
26	Performance measurement of decision-making units under uncertainty conditions: An approach based on double frontier analysis. Measurement: Journal of the International Measurement Confederation, 2015, 69, 264-279.	2.5	17
27	The role of time in multi-component efficiency analysis: An application. Applied Mathematics and Computation, 2006, 177, 11-17.	1.4	16
28	DEA-like models for multi-component performance measurement. Applied Mathematics and Computation, 2005, 163, 735-743.	1.4	15
29	Multi-component efficiency measurement with imprecise data. Applied Mathematics and Computation, 2005, 162, 1265-1277.	1.4	15
30	A distance-based measure of super efficiency in data envelopment analysis: an application to gas companies. Journal of Global Optimization, 2012, 54, 117-128.	1.1	15
31	Two-stage additive integer-valued data envelopment analysis models. Journal of Modelling in Management, 2019, 14, 199-213.	1.1	15
32	An improvement to the cost efficiency interval: A DEA-based approach. Applied Mathematics and Computation, 2006, 181, 775-781.	1.4	14
33	Production planning: a DEA-based approach. International Journal of Advanced Manufacturing Technology, 2011, 56, 369-376.	1.5	14
34	Notes on "Classifying inputs and outputs in data envelopment analysis― Applied Mathematics Letters, 2012, 25, 1625-1628.	1.5	14
35	Assessing the impact of the external non-discretionary factor on the performance of forest management units using DEA approach. Journal of Forest Research, 2017, 22, 144-152.	0.7	14
36	A Data Envelopment Analysis Approach to Supply Chain Efficiency. Advances in Decision Sciences, 2011, 2011, 1-8.	1.4	13

#	Article	IF	CITATIONS
37	Marginal rates of substitution in data envelopment analysis with undesirable outputs: A directional approach. Measurement: Journal of the International Measurement Confederation, 2015, 68, 49-57.	2.5	13
38	An alternative clustering approach: a DEA-based procedure. Optimization, 2013, 62, 227-240.	1.0	12
39	Marginal rates of substitution in the presence of non-discretionary factors: A data envelopment analysis approach. Measurement: Journal of the International Measurement Confederation, 2014, 58, 409-415.	2.5	12
40	Supply chains performance with undesirable factors and reverse flows: A DEA-based approach. Journal of the Operational Research Society, 2019, 70, 125-135.	2.1	12
41	Measuring the efficiency of two-stage network processes: A satisficing DEA approach. Journal of the Operational Research Society, 2021, 72, 354-366.	2.1	12
42	Multi-period efficiency analysis in data envelopment analysis. International Journal of Mathematics in Operational Research, 2010, 2, 113.	0.1	11
43	An extended shortest path problem: A data envelopment analysis approach. Applied Mathematics Letters, 2012, 25, 1839-1843.	1.5	11
44	Generating strong defining hyperplanes of the production possibility set in data envelopment analysis. Applied Mathematics Letters, 2012, 25, 605-609.	1.5	11
45	Developing a new integrated artificial immune system and fuzzy non-discretionary DEA approach. Soft Computing, 2021, 25, 8109-8127.	2.1	10
46	Input/output deterioration in production processes. Expert Systems With Applications, 2011, 38, 5822-5825.	4.4	9
47	Multi-dimensional non-discretionary factors in production processes: a data envelopment analysis. IMA Journal of Management Mathematics, 2014, 25, 435-448.	1.1	9
48	Performance assessment in production systems without explicit inputs: an application to basketball players. IMA Journal of Management Mathematics, 2016, 27, 143-156.	1.1	9
49	An improvement to the fixed point iterative method. Applied Mathematics and Computation, 2006, 182, 567-571.	1.4	8
50	Production planning in data envelopment analysis without explicit inputs. RAIRO - Operations Research, 2013, 47, 273-284.	1.0	8
51	Measuring the relative performance of forest management units: a chance-constrained DEA model in the presence of the nondiscretionary factor. Canadian Journal of Forest Research, 2019, 49, 788-801.	0.8	8
52	Performance measurement of gas companies with fixed-sum inputs: a DEA-based model. Journal of Economic Studies, 2020, 47, 1591-1603.	1.0	8
53	Increasing the discrimination power of data envelopment analysis. International Journal of Operational Research, 2014, 19, 198.	0.1	7
54	A DEA model for two-stage parallel-series production processes. RAIRO - Operations Research, 2014, 48, 123-134.	1.0	7

#	Article	IF	CITATIONS
55	Fuzzy integer-valued data envelopment analysis. RAIRO - Operations Research, 2018, 52, 1429-1444.	1.0	7
56	Data envelopment analysis with common weights: the weight restriction approach. Mathematical Sciences, 2018, 12, 197-203.	1.0	7
57	Data-driven approach to find the best partner for merger and acquisitions in banking industry. Industrial Management and Data Systems, 2020, 121, 879-893.	2.2	7
58	Performance analysis of sustainable supply networks with bounded, discrete, and joint factors. Environment, Development and Sustainability, 2022, 24, 238-270.	2.7	7
59	DETERMINING AN EQUITABLE ALLOCATION OF NEW INPUT AND OUTPUT USING DATA ENVELOPMENT ANALYSIS. Journal of the Operations Research Society of Japan, 2003, 46, 66-73.	0.3	6
60	Sustainability assessment in the presence of undesirable factors over time: A case on gas companies. Expert Systems, 2020, 37, e12316.	2.9	6
61	Double Frontier Two-Stage Fuzzy Data Envelopment Analysis. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2020, 28, 117-152.	0.9	6
62	Performance measurement in data envelopment analysis without slacks: an application to electricity distribution companies. RAIRO - Operations Research, 2018, 52, 1069-1085.	1.0	5
63	Alternative Trade-Offs in Data Envelopment Analysis: An Application to Hydropower Plants. Mathematical Problems in Engineering, 2016, 2016, 1-8.	0.6	4
64	Dea-based models for best partner selection for merger. RAIRO - Operations Research, 2017, 51, 1345-1357.	1.0	4
65	Optimal scale sizes in input–output allocative data envelopment analysis models. Annals of Operations Research, 2022, 315, 1455-1476.	2.6	4
66	Recyclable outputs in production process: a data envelopment analysis approach. International Journal of Operational Research, 2013, 18, 62.	0.1	3
67	Data envelopment analysis with discreteâ€valued inputs and outputs. Expert Systems, 2014, 31, 335-342.	2.9	3
68	Cost efficiency measurement with price uncertainty: a data envelopment analysis. Mathematical Sciences, 2020, 14, 387-396.	1.0	3
69	Performance analysis in a stochastic supply chain with reverse flows: a DEA-based approach. IMA Journal of Management Mathematics, 0, , .	1.1	3
70	Sustainability Assessment and Most Productive Scale Size: a Stochastic DEA Approach with Dual Frontiers. Environmental Modeling and Assessment, 2021, 26, 723-735.	1.2	3
71	Selective proportionality and integer-valued data in DEA: an application to performance evaluation of high schools. Operational Research, 2022, 22, 3435-3459.	1.3	3
72	Data envelopment analysis with selective convexity and integer-valued factors. Applied Mathematics and Computation, 2007, 188, 734-738.	1.4	2

#	Article	IF	CITATIONS
73	Evaluating the efficiency of a two-stage network structure with the use of fractional programming. Discrete Mathematics, Algorithms and Applications, 2017, 09, 1750034.	0.4	2
74	Cost Efficiency Measurement in Data Envelopment Analysis with Dynamic Network Structures: A Relational Model. Asia-Pacific Journal of Operational Research, 2017, 34, 1750023.	0.9	2
75	Decision-Making Modeling in Service Systems. Mathematical Problems in Engineering, 2017, 2017, 1-3.	0.6	2
76	Determining a common set of weights in data envelopment analysis by bootstrap. Mathematical Sciences, 2020, 14, 335-344.	1.0	2
77	Performance and competition analysis with fixed-sum measures : A case on OPEC members. Journal of Information and Optimization Sciences, 2021, 42, 669-687.	0.2	2
78	Prioritization method for frontier DMUs: a distance-based approach. Journal of Applied Mathematics, 2004, 2004, 395-407.	0.4	1
79	Russell-graph measure and super efficiency in data envelopment analysis. International Journal of Mathematics in Operational Research, 2013, 5, 406.	0.1	1
80	Restricted variation in data envelopment analysis with undesirable factors in nature. International Journal of Biomathematics, 2015, 08, 1550034.	1.5	1
81	Multi-dimensional Nondiscretionary Factors in Data Envelopment Analysis: A Slack-Based Measure. Computational Economics, 2016, 48, 211-223.	1.5	1
82	Detecting the multi-period performance and efficiency changes of systems with undesirable outputs. Discrete Mathematics, Algorithms and Applications, 2018, 10, 1850034.	0.4	1
83	Undesirable factors and marginal rates of substitution in Data Envelopment Analysis. Mathematical Sciences, 0, , 1.	1.0	1
84	Non-radial two-stage network DEA model to estimate returns to scale. Journal of Modelling in Management, 2023, 18, 36-60.	1.1	1
85	Closest reference point on the strong efficient frontier in data envelopment analysis. AIMS Mathematics, 2020, 5, 811-827.	0.7	1
86	A Linear Programming Relaxation DEA Model for Selecting a Single Efficient Unit with Variable RTS Technology. Croatian Operational Research Review, 2021, 12, 131-137.	0.6	1
87	Prioritization method for frontier DMUs: A slack-based measure. Applied Mathematics and Computation, 2006, 174, 409-418.	1.4	0
88	Super Efficiency in DEA: An Application to Gas Companies. , 2008, , .		0
89	Factors Affecting Greenhouse Owners' Performance. International Journal of Vegetable Science, 2014, 20, 329-339.	0.6	0
90	Optimization and Decision Science. Scientific World Journal, The, 2015, 2015, 1-2.	0.8	0

#	Article	IF	CITATIONS
91	Measurement of overall performances of decision-making units in the presence of interval data. International Journal of Operational Research, 2017, 28, 429.	0.1	0
92	Group efficiency analysis in decision processes: a data envelopment analysis approach. Croatian Operational Research Review, 2019, 10, 75-88.	0.6	0
93	Scale elasticity in the presence of integer data: An application to electricity distribution companies. Estudios De Economia Aplicada (discontinued), 2021, 39, .	0.2	0
94	Scale elasticity in the presence of integer data: An application to electricity distribution companies. Estudios De Economia Aplicada (discontinued), 2021, 39, .	0.2	0
95	Cost efficiency analysis in data envelopment analysis framework: An application to sugar industries. Journal of Information and Optimization Sciences, 2021, 42, 1137-1161.	0.2	0
96	Measurement of overall performances of decision-making units in the presence of interval data. International Journal of Operational Research, 2017, 28, 429.	0.1	0
97	OPTIMAL UTILIZATION OF RESOURCES IN ORGANIZATIONS USING DATA ENVELOPMENT ANALYSIS. Advances and Applications in Statistics, 2018, 52, 73-95.	0.0	0
98	The Use of Bootstrap for Weight Control in Data Envelopment Analysis. Industrial Engineering and Management Systems, 2018, 17, 840-849.	0.3	0