Janet R Morrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9173424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metalâ^'Organic Polyhedron with Four Fe(III) Centers Producing Enhanced T ₁ Magnetic Resonance Imaging Contrast in Tumors. Inorganic Chemistry, 2022, 61, 2603-2611.	4.0	14
2	Distinct Coordination Chemistry of Fe(III)-Based MRI Probes. Accounts of Chemical Research, 2022, 55, 1435-1444.	15.6	23
3	Dinuclear Fe(III) Hydroxypropyl-Appended Macrocyclic Complexes as MRI Probes. Inorganic Chemistry, 2021, 60, 8651-8664.	4.0	24
4	Comparison of phosphonate, hydroxypropyl and carboxylate pendants in Fe(III) macrocyclic complexes as MRI contrast agents. Journal of Inorganic Biochemistry, 2021, 225, 111594.	3.5	11
5	Liposomal Fe(III) Macrocyclic Complexes with Hydroxypropyl Pendants as MRI Probes. ACS Applied Bio Materials, 2021, 4, 7951-7960.	4.6	9
6	Should You Become a Chemist Entrepreneur?. Inorganic Chemistry, 2021, 60, 17415-17418.	4.0	0
7	A Class of Fe ^{III} Macrocyclic Complexes with Alcohol Donor Groups as Effective <i>T</i> ₁ MRI Contrast Agents. Angewandte Chemie - International Edition, 2020, 59, 2414-2419.	13.8	49
8	Isomeric Co(ii) paraCEST agents as pH responsive MRI probes. Dalton Transactions, 2020, 49, 279-284.	3.3	12
9	A Class of Fe ^{III} Macrocyclic Complexes with Alcohol Donor Groups as Effective <i>T</i> ₁ MRI Contrast Agents. Angewandte Chemie, 2020, 132, 2435-2440.	2.0	20
10	Saccharomyces cerevisiae and Candida albicans Yeast Cells Labeled with Fe(III) Complexes as MRI Probes. Magnetochemistry, 2020, 6, 41.	2.4	0
11	Co(II) Macrocyclic Complexes Appended with Fluorophores as paraCEST and cellCEST Agents. Inorganic Chemistry, 2020, 59, 16531-16544.	4.0	6
12	Modulating the Properties of Fe(III) Macrocyclic MRI Contrast Agents by Appending Sulfonate or Hydroxyl Groups. Molecules, 2020, 25, 2291.	3.8	29
13	Binding and Release of FeIII Complexes from Glucan Particles for the Delivery of T ₁ MRI Contrast Agents. ChemMedChem, 2020, 15, 1050-1057.	3.2	19
14	Co(II) and Fe(II) triazole-appended 4,10-diaza-15-crown-5-ether Macrocyclic complexes for CEST MRI applications. Inorganica Chimica Acta, 2020, 509, 119649.	2.4	4
15	Co II Complexes as Liposomal CEST Agents. Angewandte Chemie, 2020, 132, 12191-12195.	2.0	6
16	Co II Complexes as Liposomal CEST Agents. Angewandte Chemie - International Edition, 2020, 59, 12093-12097.	13.8	11
17	What IS Inorganic Chemistry?. Inorganic Chemistry, 2019, 58, 9515-9516.	4.0	2
18	Metals in Biology: From Metallomics to Trafficking, Inorganic Chemistry, 2019, 58, 13505-13508,	4.0	17

JANET R MORROW

#	Article	IF	CITATIONS
19	MRI and fluorescence studies of Saccharomyces cerevisiae loaded with a bimodal Fe(III) T1 contrast agent. Journal of Inorganic Biochemistry, 2019, 201, 110832.	3.5	15
20	Exploring Inner-Sphere Water Interactions of Fe(II) and Co(II) Complexes of 12-Membered Macrocycles To Develop CEST MRI Probes. Inorganic Chemistry, 2019, 58, 8710-8719.	4.0	25
21	Nickel(II) Complexes as Paramagnetic Shift and paraCEST Agents. European Journal of Inorganic Chemistry, 2018, 2018, 1902-1908.	2.0	15
22	Inner-Sphere and Outer-Sphere Water Interactions in Co(II) paraCEST Agents. Inorganic Chemistry, 2018, 57, 2085-2095.	4.0	33
23	Fe(ii) and Co(ii)N-methylated CYCLEN complexes as paraSHIFT agents with large temperature dependent shifts. Dalton Transactions, 2018, 47, 916-924.	3.3	27
24	Low-Spin Fe(III) Macrocyclic Complexes of Imidazole-Appended 1,4,7-Triazacyclononane as Paramagnetic Probes. Inorganic Chemistry, 2018, 57, 8364-8374.	4.0	34
25	Next-Generation Magnetic Resonance Imaging Contrast Agents. Inorganic Chemistry, 2017, 56, 6029-6034.	4.0	34
26	Imidazole-Appended Macrocyclic Complexes of Fe(II), Co(II), and Ni(II) as ParaCEST Agents. Inorganic Chemistry, 2017, 56, 4545-4554.	4.0	35
27	An Fe ^{III} Azamacrocyclic Complex as a pHâ€Tunable Catholyte and Anolyte for Redoxâ€Flow Battery Applications. Chemistry - A European Journal, 2017, 23, 15327-15331.	3.3	25
28	Chapter 12 Transition Metal paraCEST Probes as Alternatives to Lanthanides. , 2017, , 257-282.		3
29	Gear Up for a pH Shift: A Responsive Iron(II) 2-Amino-6-picolyl-Appended Macrocyclic paraCEST Agent That Protonates at a Pendent Group. Inorganic Chemistry, 2016, 55, 12001-12010.	4.0	45
30	Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy. Journal of Chemical Education, 2016, 93, 1115-1119.	2.3	17
31	Six-coordinate Iron(II) and Cobalt(II) paraSHIFT Agents for Measuring Temperature by Magnetic Resonance Spectroscopy. Inorganic Chemistry, 2016, 55, 700-716.	4.0	61
32	Six, Seven or Eight Coordinate Fe ^{II} , Co ^{II} or Ni ^{II} Complexes of Amideâ€Appended Tetraazamacrocycles for ParaCEST Thermometry. Chemistry - A European Journal, 2015, 21, 18290-18300.	3.3	42
33	Zn2+-Selective Switch of Duplex to Hairpin DNA. Inorganic Chemistry, 2015, 54, 3084-3086.	4.0	5
34	Redox-activated MRI contrast agents based on lanthanide and transition metal ions. Journal of Inorganic Biochemistry, 2014, 133, 143-154.	3.5	71
35	Comparison of divalent transition metal ion paraCEST MRI contrast agents. Journal of Biological Inorganic Chemistry, 2014, 19, 191-205.	2.6	66
36	Seven-Coordinate Co ^{II} , Fe ^{II} and Six-Coordinate Ni ^{II} Amide-Appended Macrocyclic Complexes as ParaCEST Agents in Biological Media. Inorganic Chemistry, 2014, 53, 8311-8321.	4.0	43

JANET R MORROW

#	Article	IF	CITATIONS
37	A Redoxâ€Activated MRI Contrast Agent that Switches Between Paramagnetic and Diamagnetic States. Angewandte Chemie - International Edition, 2013, 52, 13997-14000.	13.8	95
38	CoCEST: cobalt(ii) amide-appended paraCEST MRI contrast agents. Chemical Communications, 2013, 49, 10025.	4.1	77
39	The NiCEST Approach: Nickel(II) ParaCEST MRI Contrast Agents. Journal of the American Chemical Society, 2012, 134, 18503-18505.	13.7	79
40	The reactivity of macrocyclic Fe(II) paraCEST MRI contrast agents towards biologically relevant anions, cations, oxygen or peroxide. Journal of Inorganic Biochemistry, 2012, 117, 212-219.	3.5	40
41	Macrocyclic ligands for Fe(II) paraCEST and chemical shift MRI contrast agents. Inorganica Chimica Acta, 2012, 393, 3-11.	2.4	61
42	Iron(II) Complexes Containing Octadentate Tetraazamacrocycles as ParaCEST Magnetic Resonance Imaging Contrast Agents. Inorganic Chemistry, 2012, 51, 7448-7450.	4.0	48
43	The Development of Iron(II) Complexes as ParaCEST MRI Contrast Agents. European Journal of Inorganic Chemistry, 2012, 2012, 2006-2014.	2.0	48
44	Manganese-Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids The Development of Iron(II) Complexes as ParaCEST MRI Contrast Agents Lanthanide Complexes as Paramagnetic Probes for 19F Magnetic Resonance The Solution Structure and Dynami. European Journal of Inorganic Chemistry, 2012, 2012, n/a-n/a.	2.0	0
45	Spectroscopic Investigations of Lanthanide Ion Binding to Nucleic Acids. Metal Ions in Life Sciences, 2012, 10, 171-199.	2.8	10
46	Iron(II) PARACEST MRI Contrast Agents. Journal of the American Chemical Society, 2011, 133, 14154-14156.	13.7	108
47	Eu(III) Complexes as Anion-Responsive Luminescent Sensors and Paramagnetic Chemical Exchange Saturation Transfer Agents. Inorganic Chemistry, 2011, 50, 4857-4867.	4.0	68
48	Luminescence Resonance Energy Transfer in Heterodinuclear Ln ^{III} Complexes for Sensing Biologically Relevant Anions. European Journal of Inorganic Chemistry, 2011, 2011, 154-164.	2.0	45
49	Activation of a PARACEST Agent for MRI through Selective Outersphere Interactions with Phosphate Diesters. Inorganic Chemistry, 2010, 49, 5963-5970.	4.0	37
50	Cerium(III), Europium(III), and Ytterbium(III) Complexes with Alcohol Donor Groups as Chemical Exchange Saturation Transfer Agents for MRI. Inorganic Chemistry, 2009, 48, 7237-7243.	4.0	38
51	PARACEST Properties of a Dinuclear Neodymium(III) Complex Bound to DNA or Carbonate. Bioconjugate Chemistry, 2009, 20, 1375-1382.	3.6	32
52	SPEED LIMITS FOR ARTIFICIAL RIBONUCLEASES. Comments on Inorganic Chemistry, 2008, 29, 169-188.	5.2	47
53	Phosphate Binding Energy and Catalysis by Small and Large Molecules. Accounts of Chemical Research, 2008, 41, 539-548.	15.6	105
54	Europium(III) Macrocyclic Complexes with Alcohol Pendant Groups as Chemical Exchange Saturation Transfer Agents. Journal of the American Chemical Society, 2006, 128, 10155-10162.	13.7	61

JANET R MORROW

#	Article	IF	CITATIONS
55	Uridine Binding by Zn(II) Macrocyclic Complexes:Â Diversion of RNA Cleavage Catalysts. Inorganic Chemistry, 2005, 44, 9397-9404.	4.0	37
56	Synthetic metallonucleases for RNA cleavage. Current Opinion in Chemical Biology, 2004, 8, 192-200.	6.1	219
57	Cooperativity between Metal Ions in the Cleavage of Phosphate Diesters and RNA by Dinuclear Zn(II) Catalysts. Inorganic Chemistry, 2003, 42, 7737-7746.	4.0	143
58	Chloroform-Soluble Schiff-Base Zn(II) or Cd(II) Complexes from a Dynamic Combinatorial Library. Inorganic Chemistry, 2001, 40, 1591-1596.	4.0	138
59	SYNTHESIS AND CRYSTALLOGRAPHIC CHARACTERIZATION OF [Eu(C ₁₈ H ₁₈ N ₆)(OAc) ₂ ⁺][Cl ^{â^{**}}] Å· 7H ₂ O, A TEN-COORDINATE Eu(III) COMPLEX WITH A CLOSE-TO-PLANAR HEXADENTATE C ₁₈ N _{N₆LIGAND: AN INTERESTING CASE OF A STRUCTURE WITH}	2.2	4
60	Harnessing thorium(iv) as a catalyst: RNA and phosphate diester cleavage by a thorium(iv) macrocyclic complex. Chemical Communications, 2000, , 2509-2510.	4.1	18
61	Hypervalent phosphorus compounds as ligands. Heteroatom Chemistry, 1998, 9, 699-702.	0.7	0
62	Effect of Mixed Pendent Groups on the Solution and Catalytic Properties of Europium(III) Macrocyclic Complexes:  Bifunctional and Monofunctional Amide and Alcohol Pendents in Septadentate or Octadentate Ligands. Inorganic Chemistry, 1998, 37, 3989-3998.	4.0	78
63	Crystal and molecular structure of the triflate salt of diprotonated 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane, [C10H22N4(CH2CH2OH)4 2+]â^'[CF3SO3 â^']2: geometry of a diprotonated octadenate ligand. Journal of Chemical Crystallography, 1997, 27, 319-324.	1.1	1
64	Restoration of Catalytic Activity by Replacement of a Coordinated Amide Group:Â Synthesis and Laser-Induced Luminescence Studies of the Phosphate Diester Transesterification Catalyst [Eu(NBAC)]3+. Inorganic Chemistry, 1996, 35, 7466-7467.	4.0	39
65	Metal Ion Macrocyclic Complexes as Artificial Ribonucleases. Advances in Chemistry Series, 1996, , 431-447.	0.6	1
66	Lanthanide(III) Tetraamide Macrocyclic Complexes as Synthetic Ribonucleases: Structure and Catalytic Properties of[La(tcmc)(CF3SO3)(EtOH)](CF3SO3)2. Angewandte Chemie International Edition in English, 1994, 33, 773-775.	4.4	171
67	RNA Cleavage and Phosphate Diester Transesterification by Encapsulated Lanthanide Ions: Traversing the Lanthanide Series with Lanthanum(III), Europium(III), and Lutetium(III) Complexes of1,4,7,10-Tetrakis(2-hydroxyalkyl)-1,4,7,10-tetraazacyclododecane. Inorganic Chemistry, 1994, 33,	4.0	77