Steve W C Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9173415/publications.pdf

Version: 2024-02-01

257357 189801 3,655 51 24 50 citations h-index g-index papers 59 59 59 3991 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	The prefrontal cortex and (uniquely) human cooperation: a comparative perspective. Neuropsychopharmacology, 2022, 47, 119-133.	2.8	13
2	Social neuroscience: Staying bonded over oxytocin and endocannabinoids. Current Biology, 2022, 32, R228-R231.	1.8	2
3	Increasing Central Serotonin with 5-hydroxytryptophan Disrupts the Inhibition of Social Gaze in Nonhuman Primates. Journal of Neuroscience, 2022, 42, 670-681.	1.7	1
4	Widespread implementations of interactive social gaze neurons in the primate prefrontal-amygdala networks. Neuron, 2022, 110, 2183-2197.e7.	3.8	15
5	Interplay between the oxytocin and opioid systems in regulating social behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	9
6	Oxytocin does not stand alone. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	5
7	Prefrontal–amygdala circuits in social decision-making. Nature Neuroscience, 2021, 24, 5-18.	7.1	107
8	Disentangling perceptual awareness from nonconscious processing in rhesus monkeys (<i>Macaca) Tj ETQq0 0</i>	0 rgBT /O 3.3	verlock 10 Tf 5 28
9	Autonomic arousal tracks outcome salience not valence in monkeys making social decisions Behavioral Neuroscience, 2021, 135, 443-452.	0.6	1
10	Levels of naturalism in social neuroscience research. IScience, 2021, 24, 102702.	1.9	25
11	Toward a holistic view of value and social processing in the amygdala: Insights from primate behavioral neurophysiology. Behavioural Brain Research, 2021, 411, 113356.	1.2	6
12	Social processing by the primate medial frontal cortex. International Review of Neurobiology, 2021, 158, 213-248.	0.9	5
13	Combinatorial Oxytocin Neuropharmacology in Social Cognition. Trends in Cognitive Sciences, 2020, 24, 8-12.	4.0	14
14	Is There a â€~Social' Brain? Implementations and Algorithms. Trends in Cognitive Sciences, 2020, 24, 802-813.	4.0	117
15	The anterior cingulate cortex is necessary for forming prosocial preferences from vicarious reinforcement in monkeys. PLoS Biology, 2020, 18, e3000677.	2.6	45
16	Aversion towards simple broken patterns predicts moral judgment. Personality and Individual Differences, 2020, 160, 109810.	1.6	4
17	Specialized medial prefrontal–amygdala coordination in other-regarding decision preference. Nature Neuroscience, 2020, 23, 565-574.	7.1	75
18	Differences in how macaques monitor others: Does serotonin play a central role?. Wiley Interdisciplinary Reviews: Cognitive Science, 2019, 10, e1494.	1.4	11

#	Article	IF	Citations
19	From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends in Neurosciences, 2019, 42, 23-42.	4.2	72
20	The dorsomedial prefrontal cortex computes task-invariant relative subjective value for self and other. ELife, $2019, 8, .$	2.8	48
21	The effects of 5-hydroxytryptophan on attention and central serotonin neurochemistry in the rhesus macaque. Neuropsychopharmacology, 2018, 43, 1589-1598.	2.8	24
22	An integrated framework for the role of oxytocin in multistage social decisionâ€making. American Journal of Primatology, 2018, 80, e22735.	0.8	30
23	Social subjective value in the primate midbrain. Nature Neuroscience, 2018, 21, 1298-1299.	7.1	3
24	Shining Light on Social Learning Circuits. Trends in Cognitive Sciences, 2018, 22, 673-675.	4.0	3
25	Oxytocin under opioid antagonism leads to supralinear enhancement of social attention. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5247-5252.	3.3	43
26	Posterior Cingulate Neurons Dynamically Signal Decisions to Disengage during Foraging. Neuron, 2017, 96, 339-347.e5.	3.8	43
27	Social resource foraging is guided by the principles of the Marginal Value Theorem. Scientific Reports, 2017, 7, 11274.	1.6	13
28	Social learning through prediction error in the brain. Npj Science of Learning, 2017, 2, 8.	1.5	91
29	Distributed Neural Activity Patterns during Human-to-Human Competition. Frontiers in Human Neuroscience, 2017, 11, 571.	1.0	48
30	An Emerging Field of Primate Social Neurophysiology: Current Developments. ENeuro, 2017, 4, ENEURO.0295-17.2017.	0.9	15
31	Live interaction distinctively shapes social gaze dynamics in rhesus macaques. Journal of Neurophysiology, 2016, 116, 1626-1643.	0.9	23
32	The Anterior Cingulate Gyrus and Social Cognition: Tracking the Motivation of Others. Neuron, 2016, 90, 692-707.	3.8	381
33	Region-Specific Summation Patterns Inform the Role of Cortical Areas in Selecting Motor Plans. Cerebral Cortex, 2016, 26, 2154-2166.	1.6	4
34	Neural components of altruistic punishment. Frontiers in Neuroscience, 2015, 9, 26.	1.4	17
35	Neural mechanisms of social decision-making in the primate amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 16012-16017.	3.3	120
36	Toward a better understanding of social learning, social deciding, and other-regarding preferences. Frontiers in Neuroscience, 2014, 8, 362.	1.4	1

#	Article	IF	Citations
37	Amygdala: Eyes Wide Open. Current Biology, 2014, 24, R1000-R1002.	1.8	4
38	Oxytocin and social cognition in rhesus macaques: Implications for understanding and treating human psychopathology. Brain Research, 2014, 1580, 57-68.	1.1	57
39	The neuroethology of friendship. Annals of the New York Academy of Sciences, 2014, 1316, 1-17.	1.8	101
40	Neuronal reference frames for social decisions in primate frontal cortex. Nature Neuroscience, 2013, 16, 243-250.	7.1	284
41	Brain games: Toward a neuroecology of social behavior. Behavioral and Brain Sciences, 2013, 36, 424-425.	0.4	2
42	Neuroethology of primate social behavior. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10387-10394.	3.3	124
43	Coordinate transformation approach to social interactions. Frontiers in Neuroscience, 2013, 7, 147.	1.4	25
44	Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques () Tj ETQq0 (America, 2012, 109, 959-964.	0 0 rgBT /0 3.3	Overlock 10 Tr 254
45	The representations of reach endpoints in posterior parietal cortex depend on which hand does the reaching. Journal of Neurophysiology, 2012, 107, 2352-2365.	0.9	25
46	Mechanistic Classification of Neural Circuit Dysfunctions: Insights from Neuroeconomics Research in Animals. Biological Psychiatry, 2012, 72, 101-106.	0.7	11
47	Vicarious Reinforcement in Rhesus Macaques (Macaca Mulatta). Frontiers in Neuroscience, 2011, 5, 27.	1.4	106
48	Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7951-7956.	3.3	106
49	Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 2010, 13, 369-378.	7.1	907
50	Using a Compound Gain Field to Compute a Reach Plan. Neuron, 2009, 64, 744-755.	3.8	101
51	Limb-Specific Representation for Reaching in the Posterior Parietal Cortex. Journal of Neuroscience, 2008, 28, 6128-6140.	1.7	83