List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9172655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultraâ€strong phosphorescence with 48% quantum yield from grinding treated thermal annealed carbon dots and boric acid composite. SmartMat, 2022, 3, 260-268.	10.7	42
2	Constructing virus-like SiO _{<i>x</i>} /CeO ₂ /VO _{<i>x</i>} nanozymes for 1064 nm light-triggered mild-temperature photothermal therapy and nanozyme catalytic therapy. Nanoscale, 2022, 14, 361-372.	5.6	19
3	Enhancing the Electron Transport, Quantum Yield, and Catalytic Performance of Carbonized Polymer Dots via MnO Bridges. Small, 2022, 18, e2106863.	10.0	15
4	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114.		49
5	Polyetherimide functionalized carbon dots with enhanced red emission in aqueous solution for bioimaging. Chinese Chemical Letters, 2022, 33, 4111-4115.	9.0	15
6	Solution-processable carbon dots with efficient solid-state red/near-infrared emission. Journal of Colloid and Interface Science, 2022, 613, 547-553.	9.4	21
7	Nearâ€infrared chemiluminescent carbon nanogels for oncology imaging and therapy. SmartMat, 2022, 3, 269-285.	10.7	20
8	Enhancing the Electron Transport, Quantum Yield, and Catalytic Performance of Carbonized Polymer Dots via MnO Bridges (Small 13/2022). Small, 2022, 18, .	10.0	0
9	Surface ionization-induced tunable dynamic phosphorescence colors from carbon dots on paper for dynamic multimode encryption. Carbon, 2022, 195, 191-198.	10.3	46
10	One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging. Light: Science and Applications, 2022, 11, 113.	16.6	46
11	Rational preparation of anti-water phosphorescent carbon-dots and flake C3N4 composites through microwave-heating method for multiple data encryption. Journal of Luminescence, 2022, 248, 118928.	3.1	7
12	Toward Strong Nearâ€Infrared Absorption/Emission from Carbon Dots in Aqueous Media through Solvothermal Fusion of Large Conjugated Perylene Derivatives with Postâ€6urface Engineering. Advanced Science, 2022, 9, .	11.2	48
13	Timeâ€Dependent Phosphorescence Colors from Carbon Dots for Advanced Dynamic Information Encryption. Advanced Materials, 2021, 33, e2006781.	21.0	241
14	Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk. Biosensors and Bioelectronics, 2021, 179, 113057.	10.1	52
15	Aluminum-Based Surface Polymerization on Carbon Dots with Aggregation-Enhanced Luminescence. Journal of Physical Chemistry Letters, 2021, 12, 4530-4536.	4.6	16
16	Nitrogen and Sulfur Co-doped Carbon Dots Enhance Drought Resistance in Tomato and Mung Beans. ACS Applied Bio Materials, 2021, 4, 6093-6102.	4.6	11
17	Optical Properties of Carbon Dots in the Deepâ€Red to Nearâ€Infrared Region Are Attractive for Biomedical Applications. Small, 2021, 17, e2102325.	10.0	93
18	Regulation Mechanisms of Carbon Dots in the Development of Lettuce and Tomato. ACS Sustainable Chemistry and Engineering, 2021, 9, 944-953.	6.7	42

#	Article	IF	CITATIONS
19	Achieving 46% efficient white-light emissive carbon dot-based materials by enhancing phosphorescence for single-component white-light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 6796-6801.	5.5	46
20	Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation. Journal of Physical Chemistry Letters, 2021, 12, 604-611.	4.6	34
21	Morphology Control of Luminescent Carbon Nanomaterials: From Dots to Rolls and Belts. ACS Nano, 2021, 15, 1579-1586.	14.6	35
22	Highly efficient carbon dot-based room-temperature fluorescence–phosphorescence dual emitter. Journal of Materials Chemistry C, 2021, 9, 15577-15582.	5.5	15
23	Generating longâ€wavelength absorption bands with enhanced deep red fluorescence and photothermal performance in fused carbon dots aggregates. Aggregate, 2021, 2, e139.	9.9	28
24	Enhanced Fluorescence for Bioassembly by Environmentâ€ 6 witching Doping of Metal Ions. Advanced Functional Materials, 2020, 30, 1909614.	14.9	33
25	Microwave-assisted <i>in situ</i> large scale synthesis of a carbon dots@g-C ₃ N ₄ composite phosphor for white light-emitting devices. Materials Chemistry Frontiers, 2020, 4, 517-523.	5.9	34
26	49.25% efficient cyan emissive sulfur dots <i>via</i> a microwave-assisted route. RSC Advances, 2020, 10, 17266-17269.	3.6	32
27	A co-crystallization induced surface modification strategy with cyanuric acid modulates the bandgap emission of carbon dots. Nanoscale, 2020, 12, 10987-10993.	5.6	46
28	Efficient Two-Dimensional Tin Halide Perovskite Light-Emitting Diodes via a Spacer Cation Substitution Strategy. Journal of Physical Chemistry Letters, 2020, 11, 1120-1127.	4.6	97
29	Carbon Dots for Intracellular pH Sensing with Fluorescence Lifetime Imaging Microscopy. Nanomaterials, 2020, 10, 604.	4.1	29
30	Carbon dot-based lasers. , 2019, , 1-15.		1
31	On–Off switching of the phosphorescence signal in a carbon dot/polyvinyl alcohol composite for multiple data encryption. Nanoscale, 2019, 11, 14250-14255.	5.6	51
32	Synthesis of green emissive carbon dots@montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers. Journal of Colloid and Interface Science, 2019, 554, 344-352.	9.4	53
33	Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation. Small, 2019, 15, e1905050.	10.0	70
34	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	8.0	82
35	Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication. Nanoscale, 2019, 11, 3489-3494.	5.6	61
36	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	4.6	50

#	Article	IF	CITATIONS
37	Carbon-Dots-Derived 3D Highly Nitrogen-Doped Porous Carbon Framework for High-Performance Lithium Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 9848-9856.	6.7	42
38	Highly Emissive Carbon Dots in Solid State and Their Applications in Light-Emitting Devices and Visible Light Communication. ACS Sustainable Chemistry and Engineering, 2019, 7, 9301-9308.	6.7	81
39	Photoluminescence: Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation (Small 50/2019). Small, 2019, 15, 1970288.	10.0	2
40	Surface related intrinsic luminescence from carbon nanodots: solvent dependent piezochromism. Nanoscale Horizons, 2019, 4, 175-181.	8.0	38
41	In Vivo Tumor Photoacoustic Imaging and Photothermal Therapy Based on Supraâ€(Carbon Nanodots). Advanced Healthcare Materials, 2019, 8, e1800995.	7.6	61
42	Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots. Advanced Materials, 2018, 30, e1705913.	21.0	349
43	In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science and Applications, 2018, 7, 91.	16.6	289
44	Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. Journal of Colloid and Interface Science, 2018, 528, 281-288.	9.4	54
45	Dramatically Enhanced Photoluminescence from Femtosecond Laser Induced Microâ€ (Nanostructures on MAPbBr ₃ Single Crystal Surface. Advanced Optical Materials, 2018, 6, 1800411.	7.3	14
46	Microwave-Assisted Heating Method toward Multicolor Quantum Dot-Based Phosphors with Much Improved Luminescence. ACS Applied Materials & Interfaces, 2018, 10, 27160-27170.	8.0	21
47	Multilevel Data Encryption Using Thermalâ€Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites. Advanced Science, 2018, 5, 1800795.	11.2	173
48	Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nature Communications, 2018, 9, 3217.	12.8	122
49	Hydrogen Peroxideâ€Treated Carbon Dot Phosphor with a Bathochromicâ€Shifted, Aggregationâ€Enhanced Emission for Lightâ€Emitting Devices and Visible Light Communication. Advanced Science, 2018, 5, 1800369.	11.2	119
50	Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 3419-3431.	8.0	56
51	Conquering Aggregation-Induced Solid-State Luminescence Quenching of Carbon Dots through a Carbon Dots-Triggered Silica Gelation Process. Chemistry of Materials, 2017, 29, 1779-1787.	6.7	242
52	Origin of Anisotropic Photoluminescence in Heteroatomâ€Doped Carbon Nanodots. Advanced Optical Materials, 2017, 5, 1601049.	7.3	34
53	Preparation and application of carbon-nanodot@NaCl composite phosphors with strong green emission. Journal of Colloid and Interface Science, 2017, 497, 165-171.	9.4	47
54	Electrostatic Assembly Guided Synthesis of Highly Luminescent Carbonâ€Nanodots@BaSO ₄ Hybrid Phosphors with Improved Stability. Small, 2017, 13, 1602055.	10.0	118

#	Article	IF	CITATIONS
55	Fullâ€Color Inorganic Carbon Dot Phosphors for White‣ightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700416.	7.3	360
56	Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties. Nano Letters, 2017, 17, 8005-8011.	9.1	672
57	Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp ² â€Domain Controlling and Surface Charges Engineering. Advanced Materials, 2016, 28, 3516-3521.	21.0	583
58	Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence. RSC Advances, 2016, 6, 79620-79624.	3.6	11
59	Efficiency Improvement of Organic Solar Cells via Introducing Combined Anode Buffer Layer To Facilitate Hole Extraction. Journal of Physical Chemistry C, 2016, 120, 13954-13962.	3.1	16
60	Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence. Biosensors and Bioelectronics, 2016, 77, 124-130.	10.1	69
61	Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode. Scientific Reports, 2015, 5, 12499.	3.3	44
62	Ultrafast Carrier Dynamics and Hot Electron Extraction in Tetrapod-Shaped CdSe Nanocrystals. ACS Applied Materials & Interfaces, 2015, 7, 7938-7944.	8.0	14
63	Controllable molecular aggregation and fluorescence properties of 1,3,4-oxadiazole derivatives. Journal of Materials Chemistry C, 2015, 3, 11681-11688.	5.5	21
64	Waterâ€Triggered Luminescent "Nanoâ€bombs―Based on Supraâ€(Carbon Nanodots). Advanced Materials, 2015, 27, 1389-1394.	21.0	164
65	The work mechanism and sub-bandgap-voltage electroluminescence in inverted quantum dot light-emitting diodes. Scientific Reports, 2014, 4, 6974.	3.3	73
66	Amplified Spontaneous Green Emission and Lasing Emission From Carbon Nanoparticles. Advanced Functional Materials, 2014, 24, 2689-2695.	14.9	206
67	Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites. Nanoscale, 2014, 6, 13076-13081.	5.6	193
68	Highly Luminescent Carbonâ€Nanoparticleâ€Based Materials: Factors Influencing Photoluminescence Quantum Yield. Particle and Particle Systems Characterization, 2014, 31, 1175-1182.	2.3	44
69	Theoretical study on molecular packing and electronic structure of bi-1,3,4-oxadiazole derivatives. RSC Advances, 2014, 4, 51942-51949.	3.6	7
70	Gel Ability and Fluorescence-Enhanced Emission of a New Bi-1,3,4-Oxadiazole Derivative. Soft Materials, 2013, 11, 261-271.	1.7	2
71	Spontaneous formation of a large area, aligned, ordered, ï€-conjugated film with polarized fluorescence and an amplified spontaneous emission based on a liquid crystalline bi-1,3,4-oxadiazole derivative. RSC Advances, 2013, 3, 19104.	3.6	3
72	Organogels from unsymmetrical π-conjugated 1,3,4-oxadiazole derivatives. New Journal of Chemistry, 2013, 37, 1454.	2.8	18

#	Article	IF	CITATIONS
73	Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale, 2013, 5, 5514.	5.6	219
74	A Biocompatible Fluorescent Ink Based on Waterâ€Soluble Luminescent Carbon Nanodots. Angewandte Chemie - International Edition, 2012, 51, 12215-12218.	13.8	1,050
75	Two dimensional directed ï€â€"ï€ interactions in a linear shaped bi-1,3,4-oxadiazole derivative to achieve organic single crystal with highly polarized fluorescence and amplified spontaneous emissions. Journal of Materials Chemistry, 2012, 22, 24605.	6.7	30
76	Toward highly fluorescence and ultralow-threshold amplified spontaneous emission in ordered solid state from twin-tapered bi-1,3,4-oxadiazole derivatives. Journal of Materials Chemistry, 2012, 22, 3875.	6.7	18
77	Waveguide and ultralow-threshold amplified spontaneous emission in an aligned ordered solid state based on a highly fluorescent twin-tapered bi-1,3,4-oxadiazole derivative. Chemical Communications, 2011, 47, 4207.	4.1	13
78	Brightly fluorescent red organic solids bearing boron-bridged π–conjugated skeletons. Journal of Materials Chemistry, 2011, 21, 15298.	6.7	73
79	Evolution from Lyotropic Liquid Crystal to Helical Fibrous Organogel of an Achiral Fluorescent Twinâ€Tapered Biâ€1.3.4â€oxadiazole Derivative. Chemistry - A European Journal. 2011. 17. 3512-3518.	3.3	39