
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9171481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochimica Acta, 2019, 309, 311-325.	2.6	164
2	Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study. Journal of Materials Science: Materials in Medicine, 2009, 20, 235-247.	1.7	154
3	An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochimica Acta, 2021, 378, 138133.	2.6	93
4	Interplay between Nitrogen Concentration, Structure, Morphology, and Electrochemical Performance of PdCoNi "Core–Shell―Carbon Nitride Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2014, 1, 1359-1369.	1.7	86
5	Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane. Physical Chemistry Chemical Physics, 2015, 17, 4367-4378.	1.3	83
6	Interplay between Mechanical, Electrical, and Thermal Relaxations in Nanocomposite Proton Conducting Membranes Based on Nafion and a [(ZrO ₂)·(Ta ₂ O ₅) _{0.119}] Core–Shell Nanofiller. Journal of the American Chemical Society, 2012, 134, 19099-19107.	6.6	79
7	Synthesis, studies and fuel cell performance of "core–shell―electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride "shell―and a pyrolyzed polyketone nanoball "core― International Journal of Hydrogen Energy, 2014, 39, 2812-2827.	3.8	71
8	[Nafion/(WO3)x] hybrid membranes for vanadium redox flow batteries. Solid State Ionics, 2018, 319, 110-116.	1.3	68
9	Nanocomposite Membranes based on Polybenzimidazole and ZrO ₂ for Highâ€Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem, 2015, 8, 1381-1393.	3.6	64
10	Fe-carbon nitride "Core-shell―electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2016, 222, 1778-1791.	2.6	60
11	Interplay between morphology and electrochemical performance of "core–shell―electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride "shell―and a pyrolyzed polyketone nanoball "core― International Journal of Hydrogen Energy, 2014, 39, 2828-2841.	3.8	56
12	Interplay between Composition, Structure, and Properties of New H ₃ PO ₄ -Doped PBI ₄ N–HfO ₂ Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells. Macromolecules, 2015, 48, 15-27.	2.2	56
13	Origins, Developments, and Perspectives of Carbon Nitride-Based Electrocatalysts for Application in Low-Temperature FCs. Electrochemical Society Interface, 2015, 24, 59-64.	0.3	55
14	A Highly Hydroxide Conductive, Chemically Stable Anion Exchange Membrane, Poly(2,6 dimethyl 1,4) Tj ETQq0 C Journal of the Electrochemical Society, 2016, 163, H513-H520.	0 rgBT /0 1.3	Overlock 10 Tf 55
15	A Key concept in Magnesium Secondary Battery Electrolytes. ChemSusChem, 2015, 8, 3069-3076.	3.6	54
16	Single-Ion-Conducting Nanocomposite Polymer Electrolytes for Lithium Batteries Based on Lithiated-Fluorinated-Iron Oxide and Poly(ethylene glycol) 400. Electrochimica Acta, 2015, 175, 113-123.	2.6	47
17	Toward Pt-Free Anion-Exchange Membrane Fuel Cells: Fe–Sn Carbon Nitride–Graphene Core–Shell Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2018, 30, 2651-2659.	3.2	44
18	Interplay between structural and electrochemical properties of Pt-Rh carbon nitride electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2011, 57, 257-269.	2.6	43

#	Article	IF	CITATIONS
19	Correlation between Properties and Conductivity Mechanism in Poly(vinyl alcohol)-based Lithium Solid Electrolytes. Solid State Ionics, 2018, 320, 177-185.	1.3	40
20	The influence of the cationic form and degree of hydration on the structure of Nafionâ,,¢. Solid State Ionics, 2013, 252, 84-92.	1.3	39
21	Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: Part 2. Electrical characterization. International Journal of Hydrogen Energy, 2014, 39, 2884-2895.	3.8	38
22	A Polyketone-based Anion Exchange Membrane for Electrochemical Applications: Synthesis and Characterization. Electrochimica Acta, 2017, 226, 148-157.	2.6	38
23	lodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization. Electrochimica Acta, 2011, 57, 112-122.	2.6	37
24	Oxygen reduction reaction and X-ray photoelectron spectroscopy characterisation of carbon nitride-supported bimetallic electrocatalysts. Electrochimica Acta, 2016, 215, 398-409.	2.6	35
25	Highly Conducting 3D-Hybrid Polymer Electrolytes for Lithium Batteries Based on Siloxane Networks and Cross-Linked Organic Polar Interphases. Chemistry of Materials, 2014, 26, 6339-6350.	3.2	33
26	Transport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perfluorosulfonic Imide Side Chain Perflourinated Polymer. Chemistry of Materials, 2020, 32, 38-59.	3.2	33
27	Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: Part 1. Synthesis, structure and properties. International Journal of Hydrogen Energy, 2014, 39, 2872-2883.	3.8	30
28	Interplay between solid state transitions, conductivity mechanisms, and electrical relaxations in a [PVBTMA] [Br]-b-PMB diblock copolymer membrane for electrochemical applications. Physical Chemistry Chemical Physics, 2015, 17, 31125-31139.	1.3	29
29	Elucidation of the interplay between vanadium species and charge-discharge processes in VRFBs by Raman spectroscopy. Electrochimica Acta, 2019, 318, 913-921.	2.6	28
30	Enabling High Lithium Conductivity in Polymerized Ionic Liquid Block Copolymer Electrolytes. Batteries and Supercaps, 2019, 2, 132-138.	2.4	28
31	Measurement and modeling of CO2 absorption in poly(lactic-co-glycolic acid). Journal of Supercritical Fluids, 2005, 33, 1-5.	1.6	25
32	Production of lipid microparticles containing bioactive molecules functionalized with PEG. Journal of Supercritical Fluids, 2010, 54, 328-334.	1.6	25
33	Molecular Relaxations in Magnesium Polymer Electrolytes via GHz Broadband Electrical Spectroscopy. ChemSusChem, 2013, 6, 2157-2160.	3.6	25
34	New Nanocomposite Hybrid Inorganic–Organic Proton onducting Membranes Based on Functionalized Silica and PTFE. ChemSusChem, 2012, 5, 1758-1766.	3.6	24
35	Dielectric relaxations and conduction mechanisms in polyether–clay composite polymer electrolytes under high carbon dioxide pressure. Physical Chemistry Chemical Physics, 2013, 15, 16626.	1.3	24
36	Effect of High Pressure CO ₂ on the Structure of PMMA: A FT-IR Study. Journal of Physical Chemistry B, 2011, 115, 13519-13525.	1.2	23

#	Article	IF	CITATIONS
37	Hierarchical oxygen reduction reaction electrocatalysts based on FeSn0.5 species embedded in carbon nitride-graphene based supports. Electrochimica Acta, 2018, 280, 149-162.	2.6	22
38	Interplay Between Hydroxyl Density and Relaxations in Poly(vinylbenzyltrimethylammonium)- <i>b</i> -poly(methylbutylene) Membranes for Electrochemical Applications. Journal of the American Chemical Society, 2018, 140, 1372-1384.	6.6	21
39	Properties of anion exchange membrane based on polyamine: Effect of functionalized silica particles prepared by sol–gel method. Solid State Ionics, 2018, 322, 85-92.	1.3	21
40	Electric Response and Conductivity Mechanism in H3PO4‑Doped Polybenzimidazole-4Nâ^'HfO2 Nanocomposite Membranes for High Temperature Fuel Cells. Electrochimica Acta, 2017, 228, 562-574.	2.6	20
41	Opening Doors to Future Electrochemical Energy Devices: The Anionâ€Conducting Polyketone Polyelectrolytes. Advanced Functional Materials, 2018, 28, 1706522.	7.8	19
42	Electric Response and Conductivity Mechanism of Blended Polyvinylidene Fluoride/Nafion Electrospun Nanofibers. Journal of the American Chemical Society, 2020, 142, 801-814.	6.6	19
43	A general electrochemical formalism for vanadium redox flow batteries. Electrochimica Acta, 2022, 408, 139937.	2.6	19
44	Interplay Between Structure and Conductivity in 1-Ethyl-3-methylimidazolium tetrafluoroborate/(δ-MgCl 2) f Electrolytes for Magnesium Batteries. Electrochimica Acta, 2016, 219, 152-162.	2.6	18
45	Effect of Graphite and Copper Oxide on the Performance of High Potential Li[Fe 1/3 Ni 1/3 Co 1/3]PO 4 Olivine Cathodes for Lithium Batteries. Electrochimica Acta, 2017, 225, 533-542.	2.6	17
46	Chemical modification and structural rearrangements of polyketoneâ€based polymer membrane. Journal of Applied Polymer Science, 2017, 134, 45485.	1.3	17
47	Opening the door to liquid-free polymer electrolytes for calcium batteries. Electrochimica Acta, 2020, 353, 136525.	2.6	17
48	Electric response and conductivity mechanism reciprocity in H3PO4-doped Polybenzimidazole-4N-ZrO2 nanocomposite membranes. Solid State Ionics, 2018, 320, 172-176.	1.3	14
49	Structural analyses of blended Nafion/PVDF electrospun nanofibers. Physical Chemistry Chemical Physics, 2019, 21, 10357-10369.	1.3	14
50	Solid–liquid equilibria of multicomponent lipid mixtures under CO ₂ pressure: Measurement and thermodynamic modeling. AICHE Journal, 2008, 54, 2487-2494.	1.8	13
51	Three-dimensional Catenated 1-ethyl-3-methylimidazolium Halotitanate Ionic Liquid Electrolytes for Electrochemical Applications. Electrochimica Acta, 2017, 246, 914-923.	2.6	13
52	Lithiated Nanoparticles Doped with Ionic Liquids as Quasi-Solid Electrolytes for Lithium Batteries. Electrochimica Acta, 2019, 307, 51-63.	2.6	13
53	Correlation between Precursor Properties and Performance in the Oxygen Reduction Reaction of Pt and Co "Core-shell―Carbon Nitride-Based Electrocatalysts. Electrocatalysis, 2020, 11, 143-159.	1.5	13
54	High valence transition metal-doped olivine cathodes for superior energy and fast cycling lithium batteries. Journal of Materials Chemistry A, 2020, 8, 25727-25738.	5.2	12

#	Article	IF	CITATIONS
55	Exotic solid state ion conductor from fluorinated titanium oxide and molten metallic lithium. Journal of Power Sources, 2018, 400, 16-22.	4.0	11
56	Chrysalis-Like Graphene Oxide Decorated Vanadium-Based Nanoparticles: An Extremely High-Power Cathode for Magnesium Secondary Batteries. Journal of the Electrochemical Society, 2020, 167, 070547.	1.3	11
57	Hybrid twin-metal aluminum–magnesium electrolytes for rechargeable batteries. Journal of Power Sources, 2021, 493, 229681.	4.0	11
58	Enhancement of Activity and Development of Low Pt Content Electrocatalysts for Oxygen Reduction Reaction in Acid Media. Molecules, 2021, 26, 5147.	1.7	11
59	A formalism to compare electrocatalysts for the oxygen reduction reaction by cyclic voltammetry with the thin-film rotating ring-disk electrode measurements. Current Opinion in Electrochemistry, 2022, 31, 100839.	2.5	11
60	Broadband Electric Spectroscopy at High CO ₂ Pressure: Dipole Moment of CO ₂ and Relaxation Phenomena of the CO ₂ –Poly(vinyl chloride) System. Journal of Physical Chemistry B, 2011, 115, 9014-9021.	1.2	10
61	Relaxation phenomena and conductivity mechanisms in anion-exchange membranes derived from polyketone. Electrochimica Acta, 2019, 319, 253-263.	2.6	10
62	Hidden in plain sight: unlocking the full potential of cyclic voltammetry with the thin-film rotating (ring) disk electrode studies for the investigation of oxygen reduction reaction electrocatalysts. Current Opinion in Electrochemistry, 2021, 25, 100626.	2.5	10
63	Effect of subcritical CO2 on the structural and electrical properties of ORMOCERS-APE systems based on Zr and Al. Electrochimica Acta, 2005, 50, 3904-3916.	2.6	9
64	High-pressure gas-assisted absorption of protein within biopolymeric micro-patterned membrane. Biochemical Engineering Journal, 2008, 40, 241-248.	1.8	9
65	Effect of subcritical CO2 on ionic conductivity of {Al[O(CH2CH2O)8.7]i̇̀/(LiClO4)z}n hybrid inorganic–organic networks. Electrochimica Acta, 2006, 51, 1592-1601.	2.6	8
66	A New Glass-Forming Electrolyte Based on Lithium Glycerolate. Batteries, 2018, 4, 41.	2.1	8
67	Heteropolytungstate-assisted fabrication and deposition of catalytic silver nanoparticles on different reduced graphene oxide supports: Electroreduction of oxygen in alkaline electrolyte. Journal of Electroanalytical Chemistry, 2020, 875, 114694.	1.9	8
68	Design, physico-chemical characterization and <i>in vitro</i> biological activity of organogold(<scp>iii</scp>) glycoconjugates. Dalton Transactions, 2021, 50, 8963-8979.	1.6	7
69	lodide-conducting plastic crystals based on N,N-dimethyl-2-(methylsilyloxy) ethanaminium cations (MESEAn+) for application in dye-sensitized solar cells. International Journal of Hydrogen Energy, 2014, 39, 2896-2903.	3.8	6
70	Property-Relaxation Correlations in 3D-Siloxane/Polyether Hybrid Polymer Electrolytes. Journal of Physical Chemistry C, 2016, 120, 10770-10780.	1.5	6
71	(Co, Ni)Sn _{0.5} Nanoparticles Supported on Hierarchical Carbon Nitrideâ€Grapheneâ€Based Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2029-2040.	1.7	6
72	Interplay between coordination, dynamics, and conductivity mechanism in Mg/Al-catenated ionic liquid electrolytes. Journal of Power Sources, 2022, 524, 231084.	4.0	6

#	Article	IF	CITATIONS
73	Effect of Relaxations on the Conductivity of La _{1/2+1/2<i>x</i>} Li _{1/2–1/2<i>x</i>} Ti _{1–<i>x</i>} Al <i>_x< Fast Ion Conductors. Chemistry of Materials, 2022, 34, 5484-5499.</i>	/ixaO2xsub>	3ø/sub>
74	Production of Lipid Microparticles Magnetically Active by a Supercritical Fluid-Based Process. International Journal of Chemical Engineering, 2009, 2009, 1-9.	1.4	5
75	Dielectric relaxations of polyether-based polyurethanes containing ionic liquids as antistatic agents. Physical Chemistry Chemical Physics, 2016, 18, 2369-2378.	1.3	5
76	Interplay between Conductivity, Matrix Relaxations and Composition of Caâ€Polyoxyethylene Polymer Electrolytes. ChemElectroChem, 2021, 8, 2459-2466.	1.7	5
77	Pressure, Temperature, and Dew Point Broadband Electrical Spectroscopy (PTD-BES) for the Investigation of Membranes for PEMFCsâ–´. Fuel Cells, 2013, 13, 48-57.	1.5	4
78	Inorganicâ€Organic Hybrid Anion Conducting Membranes Based on Ammoniumâ€Functionalized Polyethylene Pyrroleâ€Polyethylene Ketone Copolymer. Macromolecular Chemistry and Physics, 2022, 223, 2100409.	1.1	4
79	Production of bioethanol under high pressure of CO2: The effect of process conditions. Journal of Supercritical Fluids, 2009, 51, 67-73.	1.6	3
80	Medical device disinfection by dense carbon dioxide. Journal of Hospital Infection, 2011, 77, 42-46.	1.4	3
81	(Invited) The Implications of Cation Clustering in Anion Exchange Membranes on Conductivity and Mechanical Properties. ECS Transactions, 2016, 75, 945-948.	0.3	2
82	A lipophilic ionic liquid based on formamidinium cations and TFSI: the electric response and the effect of CO ₂ on the conductivity mechanism. Physical Chemistry Chemical Physics, 2017, 19, 26230-26239.	1.3	2
83	Polyurethane-Based Electrostrictive Nanocomposites as High Strain–Low Frequency Mechanical Energy Harvesters. Journal of Physical Chemistry C, 2018, 122, 21115-21123.	1.5	2
84	Reorientational Relaxation and Hydrogen Bonding in Mixtures of Water and Methanol. Journal of the Electrochemical Society, 2018, 165, H549-H560.	1.3	2
85	(Invited) How to Expand the Scope of Cyclic Voltammetry with the Thin-Film Rotating (Ring) Disk Electrode to Investigate Oxygen Reduction Reaction Electrocatalysts. ECS Meeting Abstracts, 2021, MA2021-01, 1900-1900.	0.0	0