Sherry A Flint-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9171383/publications.pdf

Version: 2024-02-01

64 papers

9,090 citations

172207 29 h-index 61 g-index

72 all docs 72 docs citations 72 times ranked 7419 citing authors

#	Article	IF	CITATIONS
1	Structure of Linkage Disequilibrium in Plants. Annual Review of Plant Biology, 2003, 54, 357-374.	8.6	1,456
2	The Genetic Architecture of Maize Flowering Time. Science, 2009, 325, 714-718.	6.0	1,284
3	Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011, 43, 159-162.	9.4	987
4	Genetic Properties of the Maize Nested Association Mapping Population. Science, 2009, 325, 737-740.	6.0	959
5	Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant Journal, 2005, 44, 1054-1064.	2.8	821
6	Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 2013, 14, R55.	3.8	458
7	The Genetic Architecture Of Maize Height. Genetics, 2014, 196, 1337-1356.	1.2	329
8	Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association Panels Â. Plant Physiology, 2012, 158, 824-834.	2.3	307
9	<i>ZmCCT</i> and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1913-21.	3.3	290
10	Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize. PLoS Genetics, 2011, 7, e1002383.	1.5	231
11	Heterosis Is Prevalent for Multiple Traits in Diverse Maize Germplasm. PLoS ONE, 2009, 4, e7433.	1.1	173
12	Quantitative Trait Locus Analysis of Stalk Strength in Four Maize Populations. Crop Science, 2003, 43, 13.	0.8	132
13	The Genetic Architecture of Maize Stalk Strength. PLoS ONE, 2013, 8, e67066.	1.1	129
14	The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Heredity, 2012, 108, 490-499.	1.2	128
15	Genetics and Consequences of Crop Domestication. Journal of Agricultural and Food Chemistry, 2013, 61, 8267-8276.	2.4	123
16	Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theoretical and Applied Genetics, 2009, 119, 1129-1142.	1.8	118
17	The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 2017, 8, 1348.	5.8	105
18	Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theoretical and Applied Genetics, 2003, 107, 1331-1336.	1.8	71

#	Article	lF	CITATIONS
19	Optimal Designs for Genomic Selection in Hybrid Crops. Molecular Plant, 2019, 12, 390-401.	3.9	63
20	Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. Plant Journal, 2001, 27, 467-478.	2.8	56
21	The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	52
22	Physiological and Genetic Characterization of End-of-Day Far-Red Light Response in Maize Seedlings \hat{A} \hat{A} . Plant Physiology, 2010, 154, 173-186.	2.3	47
23	Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield Within the Genomes to Fields Maize Project. Frontiers in Genetics, 2020, 11, 592769.	1.1	44
24	Expanding Maize Genetic Resources with Predomestication Alleles: Maize–Teosinte Introgression Populations. Plant Genome, 2016, 9, plantgenome2015.07.0053.	1.6	43
25	Insights into the Effects of Long-Term Artificial Selection on Seed Size in Maize. Genetics, 2014, 198, 409-421.	1.2	38
26	Maize genomes to fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Research Notes, 2020, 13, 71.	0.6	38
27	Identification of Alleles Conferring Resistance to Gray Leaf Spot in Maize Derived from its Wild Progenitor Species Teosinte. Crop Science, 2016, 56, 209-218.	0.8	36
28	Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize. Genetics, 2020, 215, 215-230.	1.2	35
29	Association Mapping of Flowering and Height Traits in Germplasm Enhancement of Maize Doubled Haploid (GEMâ€ÐH) Lines. Plant Genome, 2018, 11, 170083.	1.6	33
30	Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations. G3: Genes, Genomes, Genetics, 2016, 6, 2523-2530.	0.8	32
31	Genetic Analysis of Central Carbon Metabolism Unveils an Amino Acid Substitution That Alters Maize NAD-Dependent Isocitrate Dehydrogenase Activity. PLoS ONE, 2010, 5, e9991.	1.1	30
32	Hallauer's Tusón: a decade of selection for tropical-to-temperate phenological adaptation in maize. Heredity, 2015, 114, 229-240.	1.2	30
33	Metabolomic Assessment of Key Maize Resources: GC-MS and NMR Profiling of Grain from B73 Hybrids of the Nested Association Mapping (NAM) Founders and of Geographically Diverse Landraces. Journal of Agricultural and Food Chemistry, 2016, 64, 2162-2172.	2.4	28
34	Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize. G3: Genes, Genomes, Genetics, 2017, 7, 1157-1164.	0.8	27
35	Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. BMC Research Notes, 2018, 11, 452.	0.6	25
36	Mining Natural Variation for Maize Improvement: Selection on Phenotypes and Genes., 2014,, 615-649.		24

#	Article	IF	Citations
37	Identification of Teosinte Alleles for Resistance to Southern Leaf Blight in Near Isogenic Maize Lines. Crop Science, 2017, 57, 1973-1983.	0.8	23
38	The Genomic Basis for Short-Term Evolution of Environmental Adaptation in Maize. Genetics, 2019, 213, 1479-1494.	1.2	23
39	Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs. BMC Plant Biology, 2019, 19, 412.	1.6	21
40	Relative utility of agronomic, phenological, and morphological traits for assessing genotypeâ€byâ€environment interaction in maize inbreds. Crop Science, 2020, 60, 62-81.	0.8	21
41	Genetic Relationship of Stalk Strength and Ear Height in Maize. Crop Science, 2003, 43, 23.	0.8	20
42	Development of Rigorous Fatty Acid Nearâ€Infrared Spectroscopy Quantitation Methods in Support of Soybean Oil Improvement. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 69-76.	0.8	19
43	Registration of the Maize Germplasm CRW3(S1)C6 with Resistance to Western Corn Rootworm. Journal of Plant Registrations, 2007, 1, 151-152.	0.4	18
44	Integrating Genomic and Phenomic Approaches to Support Plant Genetic Resources Conservation and Use. Plants, 2021, 10, 2260.	1.6	15
45	Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evolutionary Applications, 2022, 15, 817-837.	1.5	15
46	Stability Analysis of Kernel Quality Traits in Exoticâ€Derived Doubled Haploid Maize Lines. Plant Genome, 2019, 12, 170114.	1.6	12
47	DNAAlignEditor: DNA alignment editor tool. BMC Bioinformatics, 2008, 9, 154.	1.2	11
48	Conventional Screening Overlooks Resistance Sources: Rootworm Damage of Diverse Inbred Lines and Their B73 Hybrids Is Unrelated. Journal of Economic Entomology, 2009, 102, 1317-1324.	0.8	11
49	A B73 $ ilde{A}$ —Palomero Toluque $ ilde{A}$ \pm o mapping population reveals local adaptation in Mexican highland maize. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	11
50	Compositional Variation in Trans-Ferulic, p-coumaric, and Diferulic Acids Levels Among Kernels of Modern and Traditional Maize (Zea mays L.) Hybrids. Frontiers in Nutrition, 2020, 7, 600747.	1.6	9
51	Multiomics approach reveals a role of translational machinery in shaping maize kernel amino acid composition. Plant Physiology, 2022, 188, 111-133.	2.3	9
52	Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.). Journal of Economic Entomology, 2018, 111, 435-444.	0.8	8
53	Genetic variability of oxalate oxidaseÂactivity and elongation in water-stressed primary roots of diverse maize and rice lines. Plant Signaling and Behavior, 2013, 8, e23454.	1.2	7
54	Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize. Genetics, 2019, 213, 143-160.	1.2	7

#	Article	IF	Citations
55	Genetic control of kernel compositional variation in a maize diversity panel. Plant Genome, 2021, 14, e20115.	1.6	7
56	Germplasm Resources for Mapping Quantitative Traits in Maize. Compendium of Plant Genomes, 2018, , $143-159$.	0.3	6
57	Wiew: introgression library visualization and query tool. BMC Bioinformatics, 2010, 11, S28.	1.2	4
58	Compositional Assessments of Key Maize Populations: B73 Hybrids of the Nested Association Mapping Founder Lines and Diverse Landrace Inbred Lines. Journal of Agricultural and Food Chemistry, 2015, 63, 5282-5295.	2.4	4
59	The role of ear environment in postharvest susceptibility of maize to toxigenic <i>Aspergillus flavus</i> . Plant Breeding, 2019, 138, 38-50.	1.0	3
60	Predicting moisture content during maize nixtamalization using machine learning with NIR spectroscopy. Theoretical and Applied Genetics, 2021, 134, 3743-3757.	1.8	3
61	Registration of tropical populations of maize selected in parallel for early flowering time across the United States. Journal of Plant Registrations, 2022, 16, 100-108.	0.4	3
62	Assessment of Natural Variability of Maize Lipid Transfer Protein Using a Validated Sandwich ELISA. Journal of Agricultural and Food Chemistry, 2017, 65, 1740-1749.	2.4	2
63	The potential to breed a lowâ€protein maize for proteinâ€restricted diets. Crop Science, 0, , .	0.8	O
64	Iron Bioavailability of Maize Is Improved by Degermination for Some but Not All Genotypes: Enhancing Maize Nutrition With Biofortification and Processing. Current Developments in Nutrition, 2022, 6, 1188.	0.1	0