
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9171229/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Secondary Structure and X-ray Crystallographic Analysis of the Glideosome-Associated Connector<br>(GAC) from Toxoplasma gondii. Crystals, 2022, 12, 110.                                                 | 1.0 | 3         |
| 2  | Pantothenate biosynthesis is critical for chronic infection by the neurotropic parasite Toxoplasma gondii. Nature Communications, 2022, 13, 345.                                                         | 5.8 | 10        |
| 3  | Toxoplasma gondii phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis. PLoS Pathogens, 2022, 18, e1010438.                                                 | 2.1 | 15        |
| 4  | The Lytic Cycle of Human Apicomplexan Parasites. , 2022, , .                                                                                                                                             |     | 0         |
| 5  | N-acetylation of secreted proteins in Apicomplexa is widespread and is independent of the ER<br>acetyl-CoA transporter AT1. Journal of Cell Science, 2022, 135, .                                        | 1.2 | 7         |
| 6  | Supply and demand—heme synthesis, salvage and utilization by Apicomplexa. FEBS Journal, 2021, 288,<br>382-404.                                                                                           | 2.2 | 28        |
| 7  | <i>Toxoplasma gondii</i> <scp>GRA60</scp> is an effector protein that modulates host cell autonomous immunity and contributes to virulence. Cellular Microbiology, 2021, 23, e13278.                     | 1.1 | 19        |
| 8  | Metabolite salvage and restriction during infection — a tug of war between Toxoplasma gondii and its<br>host. Current Opinion in Biotechnology, 2021, 68, 104-114.                                       | 3.3 | 6         |
| 9  | Amino Acid Metabolism in Apicomplexan Parasites. Metabolites, 2021, 11, 61.                                                                                                                              | 1.3 | 27        |
| 10 | Coupling Auxin-Inducible Degron System with Ultrastructure Expansion Microscopy to Accelerate the<br>Discovery of Gene Function in Toxoplasma gondii. Methods in Molecular Biology, 2021, 2369, 121-137. | 0.4 | 14        |
| 11 | Naturally acquired blocking human monoclonal antibodies to Plasmodium vivax reticulocyte binding protein 2b. Nature Communications, 2021, 12, 1538.                                                      | 5.8 | 6         |
| 12 | Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the<br>Apicomplexa. Molecular Microbiology, 2021, 115, 453-465.                                          | 1.2 | 53        |
| 13 | Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLoS Biology, 2021, 19, e3001020.                                          | 2.6 | 77        |
| 14 | Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion.<br>Nature Communications, 2021, 12, 3788.                                                          | 5.8 | 12        |
| 15 | Untargeted Metabolomics Uncovers the Essential Lysine Transporter in Toxoplasma gondii.<br>Metabolites, 2021, 11, 476.                                                                                   | 1.3 | 8         |
| 16 | The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Current Opinion in Microbiology, 2021, 63, 250-258.                                                                     | 2.3 | 14        |
| 17 | Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex.<br>MBio, 2021, 12, e0205721.                                                                       | 1.8 | 24        |
| 18 | Nanos gigantium humeris insidentes: old papers informing new research into toxoplasma gondii.<br>International Journal for Parasitology, 2021, 51, 1193-1193.                                            | 1.3 | 1         |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets.<br>PLoS Pathogens, 2021, 17, e1010124.                                      | 2.1  | 12        |
| 20 | <i>C</i> -Mannosylation of <i>Toxoplasma gondii</i> proteins promotes attachment to host cells and parasite virulence. Journal of Biological Chemistry, 2020, 295, 1066-1076. | 1.6  | 9         |
| 21 | Vitamin and cofactor acquisition in apicomplexans: Synthesis <i>versus</i> salvage. Journal of<br>Biological Chemistry, 2020, 295, 701-714.                                   | 1.6  | 12        |
| 22 | The ZIP Code of Vesicle Trafficking in Apicomplexa: SEC1/Munc18 and SNARE Proteins. MBio, 2020, 11, .                                                                         | 1.8  | 31        |
| 23 | Evolution, Composition, Assembly, and Function of the Conoid in Apicomplexa. Trends in Parasitology, 2020, 36, 688-704.                                                       | 1.5  | 57        |
| 24 | Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii. BMC Biology, 2020, 18, 67.                                      | 1.7  | 35        |
| 25 | Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii.<br>Cell Reports, 2020, 30, 320-334.e6.                                       | 2.9  | 88        |
| 26 | Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma<br>Metabolism. Cell Host and Microbe, 2020, 27, 290-306.e11.              | 5.1  | 81        |
| 27 | Targeting Plasmepsins—An Achilles' Heel of the Malaria Parasite. Cell Host and Microbe, 2020, 27,<br>496-498.                                                                 | 5.1  | 4         |
| 28 | Genetic manipulation of Toxoplasma gondii. , 2020, , 897-940.                                                                                                                 |      | 11        |
| 29 | Metabolic networks and metabolomics. , 2020, , 451-497.                                                                                                                       |      | 3         |
| 30 | CRISPR/Cas9-Mediated Generation of Tetracycline Repressor-Based Inducible Knockdown in Toxoplasma gondii. Methods in Molecular Biology, 2020, 2071, 125-141.                  | 0.4  | 5         |
| 31 | C-Mannosylation of Toxoplasma gondii proteins promotes attachment to host cells and parasite virulence. Journal of Biological Chemistry, 2020, 295, 1066-1076.                | 1.6  | 11        |
| 32 | Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. Journal of Biological<br>Chemistry, 2020, 295, 701-714.                                          | 1.6  | 12        |
| 33 | Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in<br>Toxoplasma gondii. ELife, 2020, 9, .                                   | 2.8  | 71        |
| 34 | The Actomyosin Systems in Apicomplexa. Advances in Experimental Medicine and Biology, 2020, 1239,<br>331-354.                                                                 | 0.8  | 6         |
| 35 | CRISPR/Cas9-Based Knockout of GNAQ Reveals Differences in Host Cell Signaling Necessary for Egress<br>of Apicomplexan Parasites. MSphere, 2020, 5, .                          | 1.3  | 3         |
| 36 | Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage. Cell, 2019, 179, 1112-1128.e26.                                        | 13.5 | 92        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Signaling Cascades Governing Entry into and Exit from Host Cells by <i>Toxoplasma gondii</i> . Annual<br>Review of Microbiology, 2019, 73, 579-599.                                                                    | 2.9 | 55        |
| 38 | Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development. Malaria Journal, 2019, 18, 330.                                                                                                      | 0.8 | 46        |
| 39 | The roles of Centrin 2 and Dynein Light Chain 8a in apical secretory organelles discharge of <i>Toxoplasma gondii</i> . Traffic, 2019, 20, 583-600.                                                                    | 1.3 | 40        |
| 40 | The lectin-specific activity of Toxoplasma gondii microneme proteins 1 and 4 binds Toll-like receptor 2 and 4 N-glycans to regulate innate immune priming. PLoS Pathogens, 2019, 15, e1007871.                         | 2.1 | 29        |
| 41 | The triumvirate of signaling molecules controlling Toxoplasma microneme exocytosis: Cyclic GMP, calcium, and phosphatidic acid. PLoS Pathogens, 2019, 15, e1007670.                                                    | 2.1 | 36        |
| 42 | Biogenesis and secretion of micronemes in <i>Toxoplasma gondii</i> . Cellular Microbiology, 2019, 21, e13018.                                                                                                          | 1.1 | 85        |
| 43 | Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor<br>platform. Nature Microbiology, 2019, 4, 420-428.                                                                     | 5.9 | 94        |
| 44 | Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in<br>Toxoplasma gondii. ELife, 2019, 8, .                                                                         | 2.8 | 85        |
| 45 | Modeling and resistant alleles explain the selectivity of antimalarial compound 49c towards apicomplexan aspartyl proteases. EMBO Journal, 2018, 37, .                                                                 | 3.5 | 15        |
| 46 | <i>Toxoplasma gondii</i> TFP1 is an essential transporter family protein critical for microneme<br>maturation and exocytosis. Molecular Microbiology, 2018, 109, 225-244.                                              | 1.2 | 31        |
| 47 | Structural Basis of Phosphatidic Acid Sensing by APH in Apicomplexan Parasites. Structure, 2018, 26, 1059-1071.e6.                                                                                                     | 1.6 | 22        |
| 48 | Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii. Nature Communications, 2017, 8, 15710.                                                   | 5.8 | 93        |
| 49 | A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science, 2017, 358, 522-528.                                                                                             | 6.0 | 121       |
| 50 | Crosstalk between <scp>PKA</scp> and <scp>PKG</scp> controls <scp>pH</scp> â€dependent host cell<br>egress of <i>Toxoplasma gondii</i> . EMBO Journal, 2017, 36, 3250-3267.                                            | 3.5 | 111       |
| 51 | Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nature<br>Microbiology, 2017, 2, 1358-1366.                                                                                       | 5.9 | 54        |
| 52 | Functions of myosin motors tailored for parasitism. Current Opinion in Microbiology, 2017, 40, 113-122.                                                                                                                | 2.3 | 14        |
| 53 | Toxoplasma gondii immune mapped protein 1 is anchored to the inner leaflet of the plasma membrane<br>and adopts a novel protein fold. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865,<br>208-219. | 1.1 | 5         |
| 54 | Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes,<br>nutritional requirements, and thermodynamic bottlenecks. PLoS Computational Biology, 2017, 13,<br>e1005397.           | 1.5 | 44        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Insights into the molecular basis of host behaviour manipulation by <i>Toxoplasma gondii</i> infection. Emerging Topics in Life Sciences, 2017, 1, 563-572.                                           | 1.1  | 5         |
| 56 | Gliding motility powers invasion and egress in Apicomplexa. Nature Reviews Microbiology, 2017, 15, 645-660.                                                                                           | 13.6 | 291       |
| 57 | A druggable secretory protein maturase of Toxoplasma essential for invasion and egress. ELife, 2017, 6,                                                                                               | 2.8  | 89        |
| 58 | An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion. Cell Host and Microbe, 2016, 20, 731-743.                                           | 5.1  | 107       |
| 59 | Biology of rhomboid proteases in infectious diseases. Seminars in Cell and Developmental Biology, 2016, 60, 38-45.                                                                                    | 2.3  | 13        |
| 60 | A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa. FEBS<br>Letters, 2016, 590, 2469-2481.                                                               | 1.3  | 25        |
| 61 | Parasite pathogenesis: Breaching the wall for brain access. Nature Microbiology, 2016, 1, 16014.                                                                                                      | 5.9  | 2         |
| 62 | Structural and functional dissection of <i>Toxoplasma gondii</i> armadillo repeats only protein (TgARO). Journal of Cell Science, 2016, 129, 1031-45.                                                 | 1.2  | 35        |
| 63 | Phosphatidic Acid-Mediated Signaling Regulates Microneme Secretion in Toxoplasma. Cell Host and Microbe, 2016, 19, 349-360.                                                                           | 5.1  | 147       |
| 64 | Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends in<br>Parasitology, 2016, 32, 56-70.                                                                   | 1.5  | 76        |
| 65 | The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host<br>Cells. PLoS Pathogens, 2016, 12, e1005388.                                                        | 2.1  | 85        |
| 66 | Distinct contribution of <scp><i>T</i></scp> <i>oxoplasma gondii</i> rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Molecular Microbiology, 2015, 97, 244-262. | 1.2  | 43        |
| 67 | Plasticity and Redundancy in Proteins Important for Toxoplasma Invasion. PLoS Pathogens, 2015, 11, e1005069.                                                                                          | 2.1  | 20        |
| 68 | Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite<br>Interface. PLoS Pathogens, 2015, 11, e1005211.                                                  | 2.1  | 108       |
| 69 | Phylogeny, Morphology, and Metabolic and Invasive Capabilities of Epicellular Fish Coccidium Goussia<br>janae. Protist, 2015, 166, 659-676.                                                           | 0.6  | 16        |
| 70 | Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis. PLoS Computational Biology, 2015, 11, e1004261.                                       | 1.5  | 92        |
| 71 | Epicellular Apicomplexans: Parasites "On the Way Inâ€: PLoS Pathogens, 2015, 11, e1005080.                                                                                                            | 2.1  | 27        |
| 72 | Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in<br>Toxoplasma gondii Invasion. PLoS Pathogens, 2014, 10, e1004504.                                            | 2.1  | 85        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of<br>Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 2014, 10, e1004263.                               | 2.1 | 115       |
| 74 | Assessment of phosphorylation in <i>Toxoplasma</i> glideosome assembly and function.<br>Cellular Microbiology, 2014, 16, 1518-1532.                                                                               | 1.1 | 26        |
| 75 | Genetic Manipulation of Toxoplasma gondii. , 2014, , 577-611.                                                                                                                                                     |     | 20        |
| 76 | Structure of <i>Toxoplasma gondii</i> coronin, an actinâ€binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB Journal, 2014, 28, 4729-4747. | 0.2 | 50        |
| 77 | Plasticity and redundancy among AMA–RON pairs ensure host cell entry of Toxoplasma parasites.<br>Nature Communications, 2014, 5, 4098.                                                                            | 5.8 | 138       |
| 78 | Emerging roles for protein S-palmitoylation in Toxoplasma biology. International Journal for<br>Parasitology, 2014, 44, 121-131.                                                                                  | 1.3 | 27        |
| 79 | Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii. Journal of Biological Chemistry, 2013, 288, 27002-27018.                                            | 1.6 | 23        |
| 80 | Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiology Reviews, 2013, 37, 607-631.                                                                                                | 3.9 | 92        |
| 81 | Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance. EMBO Journal, 2013, 32, 1702-1716.                                                                         | 3.5 | 91        |
| 82 | The Toxoplasma Protein ARO Mediates the Apical Positioning of Rhoptry Organelles, a Prerequisite for<br>Host Cell Invasion. Cell Host and Microbe, 2013, 13, 289-301.                                             | 5.1 | 94        |
| 83 | Functional genomics of Plasmodium falciparum using metabolic modelling and analysis. Briefings in Functional Genomics, 2013, 12, 316-327.                                                                         | 1.3 | 16        |
| 84 | The Plasmodium berghei Ca2+/H+ Exchanger, PbCAX, Is Essential for Tolerance to Environmental Ca2+<br>during Sexual Development. PLoS Pathogens, 2013, 9, e1003191.                                                | 2.1 | 35        |
| 85 | Global Analysis of Apicomplexan Protein Sâ€Acyl Transferases Reveals an Enzyme Essential for Invasion.<br>Traffic, 2013, 14, 895-911.                                                                             | 1.3 | 76        |
| 86 | The 2â€methylcitrate cycle is implicated in the detoxification of propionate in<br><i><scp>T</scp>oxoplasma gondii</i> . Molecular Microbiology, 2013, 87, 894-908.                                               | 1.2 | 32        |
| 87 | Galactose Recognition by the Apicomplexan Parasite Toxoplasma gondii. Journal of Biological<br>Chemistry, 2012, 287, 16720-16733.                                                                                 | 1.6 | 40        |
| 88 | Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding<br>Motility and Sporozoite Infectivity. PLoS Pathogens, 2012, 8, e1002725.                                   | 2.1 | 98        |
| 89 | Molecular Characterization of Toxoplasma gondii Formin 3, an Actin Nucleator Dispensable for<br>Tachyzoite Growth and Motility. Eukaryotic Cell, 2012, 11, 343-352.                                               | 3.4 | 26        |
| 90 | Prison Break: Pathogens' Strategies To Egress from Host Cells. Microbiology and Molecular Biology<br>Reviews, 2012, 76, 707-720.                                                                                  | 2.9 | 82        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Dissection of Minimal Sequence Requirements for Rhoptry Membrane Targeting in the Malaria<br>Parasite. Traffic, 2012, 13, 1335-1350.                                                      | 1.3 | 65        |
| 92  | A Tetracycline-Repressible Transactivator System to Study Essential Genes in Malaria Parasites. Cell<br>Host and Microbe, 2012, 12, 824-834.                                              | 5.1 | 94        |
| 93  | Does protein phosphorylation govern host cell entry and egress by the Apicomplexa?. International Journal of Medical Microbiology, 2012, 302, 195-202.                                    | 1.5 | 17        |
| 94  | <i>Toxoplasma gondii</i> Profilin Acts Primarily To Sequester G-Actin While Formins Efficiently<br>Nucleate Actin Filament Formation <i>in Vitro</i> . Biochemistry, 2012, 51, 2486-2495. | 1.2 | 39        |
| 95  | A Cluster of Interferon-γ-Inducible p65 GTPases Plays a Critical Role in Host Defense against Toxoplasma<br>gondii. Immunity, 2012, 37, 302-313.                                          | 6.6 | 311       |
| 96  | New insights into parasite rhomboid proteases. Molecular and Biochemical Parasitology, 2012, 182, 27-36.                                                                                  | 0.5 | 36        |
| 97  | Intramembrane Cleavage of AMA1 Triggers <i>Toxoplasma</i> to Switch from an Invasive to a Replicative Mode. Science, 2011, 331, 473-477.                                                  | 6.0 | 82        |
| 98  | Invasion factors are coupled to key signalling events leading to the establishment of infection in apicomplexan parasites. Cellular Microbiology, 2011, 13, 787-796.                      | 1.1 | 35        |
| 99  | Unusual Anchor of a Motor Complex (MyoD–MLC2) to the Plasma Membrane of <i>Toxoplasma<br/>gondii</i> . Traffic, 2011, 12, 287-300.                                                        | 1.3 | 31        |
| 100 | Toxoplasma gondii aspartic protease 1 is not essential in tachyzoites. Experimental Parasitology, 2011,<br>128, 454-459.                                                                  | 0.5 | 11        |
| 101 | Functional genetics in Apicomplexa: Potentials and limits. FEBS Letters, 2011, 585, 1579-1588.                                                                                            | 1.3 | 38        |
| 102 | ATF6β is a host cellular target of the <i>Toxoplasma gondii</i> virulence factor ROP18. Journal of Experimental Medicine, 2011, 208, 1533-1546.                                           | 4.2 | 133       |
| 103 | ATF6b is a host cellular target of theToxoplasma gondiivirulence factor ROP18. Journal of Cell<br>Biology, 2011, 193, i15-i15.                                                            | 2.3 | 0         |
| 104 | Sialic acids: Key determinants for invasion by the Apicomplexa. International Journal for Parasitology, 2010, 40, 1145-1154.                                                              | 1.3 | 17        |
| 105 | Apicoplast: keep it or leave it. Microbes and Infection, 2010, 12, 253-262.                                                                                                               | 1.0 | 33        |
| 106 | Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNAMet<br>formylation in Apicomplexa. Molecular Microbiology, 2010, 76, 706-718.                         | 1.2 | 75        |
| 107 | <i>Toxoplasma gondii</i> transmembrane microneme proteins and their modular design. Molecular<br>Microbiology, 2010, 77, 912-929.                                                         | 1.2 | 71        |
| 108 | Concerted Action of Two Formins in Gliding Motility and Host Cell Invasion by Toxoplasma gondii.<br>PLoS Pathogens, 2010, 6, e1001132.                                                    | 2.1 | 78        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Metabolic Pathways in the Apicoplast of Apicomplexa. International Review of Cell and Molecular<br>Biology, 2010, 281, 161-228.                                                                                                                             | 1.6 | 134       |
| 110 | Versatility in the acquisition of energy and carbon sources by the Apicomplexa. Biology of the Cell, 2010, 102, 435-445.                                                                                                                                    | 0.7 | 70        |
| 111 | Functional Dissection of the Apicomplexan Glideosome Molecular Architecture. Cell Host and Microbe, 2010, 8, 343-357.                                                                                                                                       | 5.1 | 256       |
| 112 | Members of a Novel Protein Family Containing Microneme Adhesive Repeat Domains Act as Sialic<br>Acid-binding Lectins during Host Cell Invasion by Apicomplexan Parasites. Journal of Biological<br>Chemistry, 2010, 285, 2064-2076.                         | 1.6 | 90        |
| 113 | A single polymorphic amino acid on <i>Toxoplasma gondii</i> kinase ROP16 determines the direct and strain-specific activation of Stat3. Journal of Experimental Medicine, 2009, 206, 2747-2760.                                                             | 4.2 | 215       |
| 114 | Host-derived glucose and its transporter in the obligate intracellular pathogen <i>Toxoplasma<br/>gondii</i> are dispensable by glutaminolysis. Proceedings of the National Academy of Sciences of the<br>United States of America, 2009, 106, 12998-13003. | 3.3 | 121       |
| 115 | Apicomplexan cytoskeleton and motors: Key regulators in morphogenesis, cell division, transport and motility. International Journal for Parasitology, 2009, 39, 153-162.                                                                                    | 1.3 | 50        |
| 116 | Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of <i>Toxoplasma gondii</i> . Protein Science, 2009, 18, 1935-1947.                                                              | 3.1 | 37        |
| 117 | Role of the Parasite and Host Cytoskeleton in Apicomplexa Parasitism. Cell Host and Microbe, 2009, 5, 602-611.                                                                                                                                              | 5.1 | 27        |
| 118 | Mechanisms controlling glideosome function in apicomplexans. Current Opinion in Microbiology, 2009, 12, 408-414.                                                                                                                                            | 2.3 | 50        |
| 119 | Review of "Molecular Mechanisms of Parasite Invasion" by Barbara A. Burleigh and Dominique<br>Soldati-Favre. Parasites and Vectors, 2009, 2, 24.                                                                                                            | 1.0 | 0         |
| 120 | Identification of conoidin A as a covalent inhibitor of peroxiredoxin II. Organic and Biomolecular<br>Chemistry, 2009, 7, 3040.                                                                                                                             | 1.5 | 66        |
| 121 | Protein Trafficking inside <i>Toxoplasma gondii</i> . Traffic, 2008, 9, 636-646.                                                                                                                                                                            | 1.3 | 48        |
| 122 | Identification of Trafficking Determinants for Polytopic Rhomboid Proteases in <i>Toxoplasma<br/>gondii</i> . Traffic, 2008, 9, 665-677.                                                                                                                    | 1.3 | 29        |
| 123 | Structural insights into microneme protein assembly reveal a new mode of EGF domain recognition.<br>EMBO Reports, 2008, 9, 1149-1155.                                                                                                                       | 2.0 | 26        |
| 124 | Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends in<br>Parasitology, 2008, 24, 468-478.                                                                                                                               | 1.5 | 116       |
| 125 | Hijacking of Host Cellular Functions by the Apicomplexa. Annual Review of Microbiology, 2008, 62, 471-487.                                                                                                                                                  | 2.9 | 131       |
| 126 | Toxoplasma Profilin Is Essential for Host Cell Invasion and TLR11-Dependent Induction of an Interleukin-12 Response. Cell Host and Microbe, 2008, 3, 77-87.                                                                                                 | 5.1 | 320       |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Roles of Proteases during Invasion and Egress by Plasmodium and Toxoplasma. Sub-Cellular<br>Biochemistry, 2008, 47, 121-139.                                                                                     | 1.0 | 44        |
| 128 | Microneme protein 8 – a new essential invasion factor in <i>Toxoplasma gondii</i> . Journal of Cell<br>Science, 2008, 121, 947-956.                                                                              | 1.2 | 117       |
| 129 | Molecular dissection of host cell invasion by the Apicomplexans: the glideosome. Parasite, 2008, 15, 197-205.                                                                                                    | 0.8 | 65        |
| 130 | Targeting the Transcriptional and Translational Machinery of the Endosymbiotic Organelle in Apicomplexans. Current Drug Targets, 2008, 9, 948-956.                                                               | 1.0 | 29        |
| 131 | Dual Targeting of Antioxidant and Metabolic Enzymes to the Mitochondrion and the Apicoplast of<br>Toxoplasma gondii. PLoS Pathogens, 2007, 3, e115.                                                              | 2.1 | 98        |
| 132 | Atomic resolution insight into host cell recognition by Toxoplasma gondii. EMBO Journal, 2007, 26, 2808-2820.                                                                                                    | 3.5 | 98        |
| 133 | A Family of Aspartic Proteases and a Novel, Dynamic and Cell-Cycle-Dependent Protease Localization in the Secretory Pathway of Toxoplasma gondii. Traffic, 2007, 8, 1018-1034.                                   | 1.3 | 51        |
| 134 | Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. International Journal for Parasitology, 2005, 35, 747-756.                                                 | 1.3 | 114       |
| 135 | Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Trends in Parasitology, 2005, 21, 254-258.                                                                                                    | 1.5 | 99        |
| 136 | The transcription machinery and the molecular toolbox to control gene expression in Toxoplasma gondii and other protozoan parasites. Microbes and Infection, 2005, 7, 1376-1384.                                 | 1.0 | 38        |
| 137 | Letter to the Editor: Complete resonance assignments of the C-terminal domain from MIC1: A micronemal protein from Toxoplasma gondii. Journal of Biomolecular NMR, 2005, 31, 177-178.                            | 1.6 | 7         |
| 138 | A Novel Galectin-like Domain from Toxoplasma gondii Micronemal Protein 1 Assists the Folding,<br>Assembly, and Transport of a Cell Adhesion Complex. Journal of Biological Chemistry, 2005, 280,<br>38583-38591. | 1.6 | 66        |
| 139 | Trans-genera reconstitution and complementation of an adhesion complex in Toxoplasma gondii.<br>Cellular Microbiology, 2004, 6, 771-782.                                                                         | 1.1 | 42        |
| 140 | The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends in Cell Biology, 2004, 14, 528-532.                                                                          | 3.6 | 199       |
| 141 | Molecular and functional aspects of parasite invasion. Trends in Parasitology, 2004, 20, 567-574.                                                                                                                | 1.5 | 111       |
| 142 | Toxoplasma as a novel system for motility. Current Opinion in Cell Biology, 2004, 16, 32-40.                                                                                                                     | 2.6 | 98        |
| 143 | Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Current<br>Opinion in Microbiology, 2004, 7, 388-396.                                                                | 2.3 | 77        |
| 144 | â€~The glideosome': a dynamic complex powering gliding motion and host cell invasion by Toxoplasma<br>gondii. Molecular Microbiology, 2002, 45, 597-604.                                                         | 1.2 | 170       |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Targeting of soluble proteins to the rhoptries and micronemes in Toxoplasma gondii. Molecular and<br>Biochemical Parasitology, 2001, 113, 45-53.                                                         | 0.5 | 92        |
| 146 | Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. International Journal for Parasitology, 2001, 31, 1293-1302. | 1.3 | 199       |
| 147 | Mix and match modules: structure and function of microneme proteins in apicomplexan parasites.<br>Trends in Parasitology, 2001, 17, 81-88.                                                               | 1.5 | 185       |
| 148 | Toxoplasma gondii myosins B/C. Journal of Cell Biology, 2001, 155, 613-624.                                                                                                                              | 2.3 | 87        |
| 149 | MPS1: a small, evolutionarily conserved zinc finger protein from the protozoanToxoplasma gondii.<br>FEMS Microbiology Letters, 1999, 180, 235-239.                                                       | 0.7 | 2         |
| 150 | Genome engineering of Toxoplasma gondii using the site-specific recombinase Cre. Gene, 1999, 234, 239-247.                                                                                               | 1.0 | 34        |
| 151 | Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma<br>gondii. Molecular and Biochemical Parasitology, 1998, 92, 325-338.                                     | 0.5 | 169       |
| 152 | Processing of Toxoplasma ROP1 protein in nascent rhoptries. Molecular and Biochemical Parasitology, 1998, 96, 37-48.                                                                                     | 0.5 | 89        |
| 153 | Molecular genetic strategies inToxoplasma gondii: close in on a successful invader. FEBS Letters, 1996,<br>389, 80-83.                                                                                   | 1.3 | 13        |
| 154 | Restriction enzyme-mediated integration elevates transformation frequency and enables co-transfection of Toxoplasma gondii. Molecular and Biochemical Parasitology, 1995, 74, 55-63.                     | 0.5 | 84        |
| 155 | Complementation of a Toxoplasma gondii ROP1 knock-out mutant using phleomycin selection.<br>Molecular and Biochemical Parasitology, 1995, 74, 87-97.                                                     | 0.5 | 87        |
| 156 | Histone-specific RNA 3′ processing in nuclear extracts from mammalian cells. Methods in Enzymology, 1990, 181, 74-89.                                                                                    | 0.4 | 16        |