Mohamed A Alaasar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9171059/publications.pdf

Version: 2024-02-01

54 papers 1,442 citations

257357 24 h-index 35 g-index

56 all docs 56 docs citations

56 times ranked 602 citing authors

#	Article	IF	Citations
1	Azobenzene-containing bent-core liquid crystals: an overview. Liquid Crystals, 2016, 43, 2208-2243.	0.9	90
2	A Liquid Crystalline Phase with Uniform Tilt, Local Polar Order and Capability of Symmetry Breaking. Advanced Materials, 2013, 25, 2186-2191.	11.1	79
3	4â€Cyanoresorcinolâ€Based Bentâ€Core Mesogens with Azobenzene Wings: Emergence of Sterically Stabilized Polar Order in Liquid Crystalline Phases. Advanced Functional Materials, 2014, 24, 1703-1717.	7.8	62
4	Helical Nanoâ€crystallite (HNC) Phases: Chirality Synchronization of Achiral Bentâ€Core Mesogens in a New Type of Dark Conglomerates. Chemistry - A European Journal, 2016, 22, 6583-6597.	1.7	59
5	4-Methylresorcinol based bent-core liquid crystals with azobenzene wings – a new class of compounds with dark conglomerate phases. Journal of Materials Chemistry C, 2014, 2, 5487-5501.	2.7	56
6	Influence of halogen substituent on the mesomorphic properties of five-ring banana-shaped molecules with azobenzene wings. Liquid Crystals, 2013, 40, 656-668.	0.9	54
7	Hydrogen-bonded supramolecular complexes formed between isophthalic acid and pyridine-based derivatives. Liquid Crystals, 2011, 38, 925-934.	0.9	50
8	Dark conglomerate phases of azobenzene derived bent-core mesogens – relationships between the molecular structure and mirror symmetry breaking in soft matter. Soft Matter, 2014, 10, 7285-7296.	1.2	48
9	Isothermal Chirality Switching in Liquidâ€Crystalline Azobenzene Compounds with Nonâ€Polarized Light. Angewandte Chemie - International Edition, 2017, 56, 10801-10805.	7.2	45
10	Supramolecular Hydrogen-Bonded Liquid Crystals Formed from 4-(4′-Pyridylazophenyl)-4″-alkoxy Benzoates and 4-Substituted Benzoic Acids. Molecular Crystals and Liquid Crystals, 2008, 487, 74-91.	0.4	43
11	Mirror symmetry breaking in cubic phases and isotropic liquids driven by hydrogen bonding. Chemical Communications, 2016, 52, 13869-13872.	2.2	43
12	Photoresponsive halogen bonded polycatenar liquid crystals. Journal of Molecular Liquids, 2019, 277, 233-240.	2.3	38
13	New azobenzene containing bent-core liquid crystals based on disubstituted resorcinol. Liquid Crystals, 2014, 41, 126-136.	0.9	37
14	Wide nematic phases induced by hydrogen-bonding. Liquid Crystals, 2019, 46, 550-559.	0.9	37
15	Spontaneous Mirrorâ€Symmetry Breaking in Isotropic Liquid Phases of Photoisomerizable Achiral Molecules. Angewandte Chemie - International Edition, 2016, 55, 312-316.	7.2	36
16	Development of Polar Order by Liquidâ€Crystal Selfâ€Assembly of Weakly Bent Molecules. Chemistry - A European Journal, 2017, 23, 5541-5556.	1.7	34
17	Polar Order, Mirror Symmetry Breaking, and Photoswitching of Chirality and Polarity in Functional Bentâ€Core Mesogens. Chemistry - A European Journal, 2019, 25, 6362-6377.	1.7	31
18	A new room temperature dark conglomerate mesophase formed by bent-core molecules combining 4-iodoresorcinol with azobenzene units. Chemical Communications, 2013, 49, 11062.	2.2	30

#	Article	IF	CITATIONS
19	Supramolecular Hydrogen-Bonded Liquid Crystals Formed from 4-(4′-Pyridylazophenyl)-4″–Substituted Benzoates and 4-Alkoxybenzoic Acids. Molecular Crystals and Liquid Crystals, 2008, 482, 57-70.	0.4	29
20	Molecular Packing in Double Gyroid Cubic Phases Revealed via Resonant Soft X-Ray Scattering. Physical Review Letters, 2020, 125, 027801.	2.9	29
21	Novel hydrogen-bonded angular supramolecular liquid crystals. Liquid Crystals, 2012, 39, 47-61.	0.9	28
22	Development of Polar Order in the Liquid Crystal Phases of a 4â€Cyanoresorcinolâ€Based Bentâ€Core Mesogen with Fluorinated Azobenzene Wings. ChemPhysChem, 2016, 17, 278-287.	1.0	28
23	Liquid crystalline self-assembly of 2,5-diphenyl-1,3,4-oxadiazole based bent-core molecules and the influence of carbosilane end-groups. Journal of Materials Chemistry C, 2019, 7, 3064-3081.	2.7	26
24	Mirror symmetry breaking in fluorinated bent-core mesogens. RSC Advances, 2016, 6, 82890-82899.	1.7	25
25	Cybotactic nematic phases of photoisomerisable hockey-stick liquid crystals. Liquid Crystals, 2017, 44, 729-737.	0.9	25
26	Cluster phases of 4-cyanoresorcinol derived hockey-stick liquid crystals. Journal of Materials Chemistry C, 2017, 5, 8454-8468.	2.7	23
27	Stereochemical Rules Govern the Soft Selfâ€Assembly of Achiral Compounds: Understanding the Heliconical Liquid rystalline Phases of Bent ore Mesogens. Chemistry - A European Journal, 2020, 26, 4714-4733.	1.7	23
28	Effective tuning of optical storage devices using photosensitive bent-core liquid crystals. Journal of Molecular Liquids, 2020, 304, 112719.	2.3	22
29	Development of polar order and tilt in lamellar liquid crystalline phases of a bent-core mesogen. Soft Matter, 2014, 10, 5003-5016.	1.2	20
30	Nematic phases driven by hydrogen-bonding in liquid crystalline nonsymmetric dimers. Liquid Crystals, 2019, 46, 124-130.	0.9	20
31	Supramolecular Liquid Crystals Induced by Hydrogen-Bonding Interactions Between Non-Mesomorphic Compounds. I. 4-(4′-Pyridylazophenyl)-4″-Substituted Benzoates and 4-Substituted Benzoic Acids. Molecular Crystals and Liquid Crystals, 2009, 506, 22-33.	0.4	19
32	Emergence of polar order and tilt in terephthalate based bent-core liquid crystals. Physical Chemistry Chemical Physics, 2017, 19, 5895-5905.	1.3	19
33	Mirror Symmetry Breaking and Network Formation in Achiral Polycatenars with Thioether Tail. Chemistry - A European Journal, 2021, 27, 14921-14930.	1.7	17
34	Supramolecular liquid crystals in binary and ternary systems. Thermochimica Acta, 2011, 517, 63-73.	1.2	16
35	Effect of exchange of terminal substituents on the mesophase behavior of laterally methyl substituted phenyl azo benzoates in pure and mixed systems. Thermochimica Acta, 2011, 525, 78-86.	1.2	15
36	Supramolecular <i>meso</i> -Trick: Ambidextrous Mirror Symmetry Breaking in a Liquid Crystalline Network with Tetragonal Symmetry. Journal of the American Chemical Society, 2022, 144, 6936-6945.	6.6	15

#	Article	IF	CITATIONS
37	Controlling liquid and liquid crystalline network formation by core-fluorination of hydrogen bonded supramolecular polycatenars. Journal of Molecular Liquids, 2021, 332, 115870.	2.3	14
38	Isothermal Chirality Switching in Liquidâ€Crystalline Azobenzene Compounds with Nonâ€Polarized Light. Angewandte Chemie, 2017, 129, 10941-10945.	1.6	13
39	Y-shaped tricatenar azobenzenes – functional liquid crystals with synclinic–anticlinic transitions and spontaneous helix formation. Journal of Materials Chemistry C, 2020, 8, 12902-12916.	2.7	13
40	Azobenzene-based supramolecular liquid crystals: The role of core fluorination. Journal of Molecular Liquids, 2020, 310, 113252.	2.3	13
41	Effect of lateral substitution of different polarity on the mesophase behaviour in pure and mixed states of 4-($4\hat{a}\in^2$ -substituted phenylazo)-2-substituted phenyl- $4\hat{a}\in^3$ -alkoxy benzoates. Liquid Crystals, 2011, 38, 391-405.	0.9	12
42	2,3,4-Trihydroxy benzonitrile-based liquid crystals: Fiber forming room temperature nematic phases. Journal of Molecular Liquids, 2020, 317, 114244.	2.3	12
43	investigation of the heliconical smectic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>SmC</mml:mi><mml:mi>http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>smml:mi>http://wml:mi>P</mml:mi>P</mml:msub></mml:mrow></mml:mi>http://wml:mrow><mml:mi>http://wml:mi>http://www.wath.com/wath.com/wath.com/smml:mi>http://www.wath.com/wath.co</mml:mi></mml:msub></mml:mrow></mml:math>	mi>Sn d:ø ni> <m< th=""><th>nl:mi>nmlomi>e</th></m<>	nl:mi>nm lo mi>e
44	Photosensitive bent-core liquid crystals based on methyl substituted 3-hydroxybenzoic acid. RSC Advances, 2017, 7, 35805-35813.	1.7	9
45	Cybotactic nematic phases with wide ranges in photoresponsive polycatenars. Liquid Crystals, 2020, 47, 939-949.	0.9	9
46	Controlling the formation of heliconical smectic phases by molecular design of achiral bent-core molecules. Journal of Materials Chemistry C, 2020, 8, 3316-3336.	2.7	9
47	Azobenzene-based polycatenars: Investigation on photo switching properties and optical storage devices. Journal of Molecular Liquids, 2021, 341, 117341.	2.3	7
48	Controlling ambidextrous mirror symmetry breaking in photosensitive supramolecular polycatenars by alkyl-chain engineering. Journal of Molecular Liquids, 2022, 351, 118597.	2.3	7
49	Photomanipulation of the Mechanical Properties in a Liquid Crystal with Azoâ€Containing Bentâ€Core Mesogens. ChemPhotoChem, 2020, 4, 5288-5295.	1.5	5
50	Possibility of mesophase formation in some model compounds based on the N-aryl benzamide group. Thermochimica Acta, 2007, 459, 40-57.	1.2	4
51	Novel green synthetic approach for liquid crystalline materials using multi-component reactions. Journal of Molecular Liquids, 2022, 346, 118244.	2.3	4
52	Non-symmetric ether-linked liquid crystalline dimers with a highly polar end group. Liquid Crystals, 0, , 1-7.	0.9	3
53	Hockey-Stick Polycatenars: Network formation and transition from one dimensional to three-dimensional liquid crystalline phases. Journal of Molecular Liquids, 2022, 351, 118613.	2.3	3
54	The influences of lateral groups on 4-cyanobiphenyl-benzonitrile- based dimers. Liquid Crystals, 2022, 49, 217-229.	0.9	2