List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9170867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classical energy calculations with electron correlation of condensed excited states — Rydberg Matter. Chemical Physics, 1998, 237, 11-19.	1.9	75
2	Title is missing!. Catalysis Letters, 2000, 67, 129-134.	2.6	67
3	Field ionizable cesium metal clusters from a foil diffusion source. Chemical Physics, 1990, 147, 189-197.	1.9	56
4	Semiconducting lowâ€pressure, lowâ€ŧemperature cesium plasma with unidirectional conduction. Journal of Applied Physics, 1991, 70, 1489-1492.	2.5	53
5	High-energy Coulomb explosions in ultra-dense deuterium: Time-of-flight-mass spectrometry with variable energy and flight length. International Journal of Mass Spectrometry, 2009, 282, 70-76.	1.5	52
6	Rydberg Matter clusters of hydrogen with well-defined kinetic energy release observed by neutral time-of-flight. Chemical Physics, 2002, 277, 201-210.	1.9	46
7	Conditions for forming Rydberg matter: condensation of Rydberg states in the gas phase versus at surfaces. Journal of Physics Condensed Matter, 2002, 14, 13469-13479.	1.8	45
8	Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF). Review of Scientific Instruments, 2011, 82, 013503.	1.3	45
9	Very low work function surfaces from condensed excited states: Rydberg matter of cesium. Surface Science, 1992, 269-270, 695-699.	1.9	44
10	superfluid ultra-dense deuterium <mml:math <br="" xmins:mml="http://www.w3.org/1998/Math/Math/ML">altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">D</mml:mi><mml:mo stretchy="false">(<mml:mo>â^`</mml:mo><mml:mn>1</mml:mn><mml:mo) 0="" etqq0="" ove<="" rgbt="" td="" tj=""><td>erlozh 10 T</td><td>f 504377 Td (</td></mml:mo)></mml:mo </mml:math>	erlozh 10 T	f 5 0 4377 Td (
11	Atomic and Solid State Physics, 2011, 375, 1344-1347. Monte Carlo simulation of RRKM unimolecular decomposition in molecular beam experiments. I. Basic considerations and calculational procedure. Chemical Physics, 1981, 60, 393-404.	1.9	43
12	Rate constants for cesium bulk diffusion and neutral desorption on pyrolytic graphite basal surfaces: A field reversal kinetic study. Surface Science, 1988, 204, 98-112.	1.9	43
13	Complex Kinetics of Desorption and Diffusion. Field Reversal Study of K Excited-State Desorption from Graphite Layer Surfaces. Journal of Physical Chemistry A, 1998, 102, 10636-10646.	2.5	43
14	Cluster KN formation by Rydberg collision complex stabilization during scattering of a K beam off zirconia surfaces. Journal of Chemical Physics, 1999, 110, 1212-1220.	3.0	43
15	Electronic Raman Processes in Rydberg Matter of Cs: Circular Rydberg States in Cs andCs+. Physical Review Letters, 1999, 83, 1739-1742.	7.8	42
16	Planar clusters of Rydberg matter KN (N=7, 14, 19, 37, 61) detected by multiphoton fragmentation time-of-flight mass spectrometry. Chemical Physics Letters, 1998, 295, 500-508.	2.6	41
17	Experimental studies of fast fragments of H Rydberg matter. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4191-4212.	1.5	41
18	Laser-induced variable pulse-power TOF-MS and neutral time-of-flight studies of ultradense deuterium. Physica Scripta, 2010, 81, 045601.	2.5	41

#	Article	IF	CITATIONS
19	Mechanism of potassium loss by desorption from an iron oxide catalyst for the styrene process. Catalysis Letters, 1990, 6, 85-93.	2.6	40
20	Angular resolved neutral desorption of potassium promoter from surfaces of iron catalysts. Surface Science, 1995, 342, 327-340.	1.9	40
21	Laser-driven nuclear fusion D+D in ultra-dense deuterium: MeV particles formed without ignition. Laser and Particle Beams, 2010, 28, 313-317.	1.0	40
22	Emission and loss of potassium promoter from styrene catalysts: studies by ultrahigh vacuum/molecular-beam and laser techniques. Applied Catalysis A: General, 2001, 212, 247-255.	4.3	38
23	Neutral Rydberg matter clusters from K: extreme cooling of translational degrees of freedom observed by neutral time-of-flight. Chemical Physics, 2002, 282, 137-146.	1.9	38
24	Search for Superconductivity in Ultra-dense Deuterium D(â^'1) at Room Temperature: Depletion of D(â^'1) at Field Strength >0.05 T. Journal of Superconductivity and Novel Magnetism, 2012, 25, 873-882.	1.8	37
25	Excitation levels in ultra-dense hydrogen p(â~'1) and d(â~'1) clusters: Structure of spin-based Rydberg Matter. International Journal of Mass Spectrometry, 2013, 352, 1-8.	1.5	37
26	Production of ultradense deuterium: A compact future fusion fuel. Applied Physics Letters, 2010, 96, .	3.3	36
27	High-charge Coulomb explosions of clusters in ultra-dense deuterium D(â^'1). International Journal of Mass Spectrometry, 2011, 304, 51-56.	1.5	36
28	Experimental Studies and Observations of Clusters of Rydberg Matter and Its Extreme Forms. Journal of Cluster Science, 2012, 23, 5-34.	3.3	36
29	Emission of excited potassium species from an industrial iron catalyst for ammonia synthesis. Catalysis Letters, 1994, 26, 101-107.	2.6	35
30	Fusion Generated Fast Particles by Laser Impact on Ultra-Dense Deuterium: Rapid Variation with Laser Intensity. Journal of Fusion Energy, 2012, 31, 249-256.	1.2	35
31	Long-Range Diffusion of K Promoter on an Ammonia Synthesis Catalyst Surface—lonization of Excited Potassium Species in the Sample Edge Fields. Journal of Catalysis, 1999, 181, 256-264.	6.2	34
32	Optical stimulated emission transitions in Rydberg matter observed in the range 800–14Â000 nm. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 357-374.	1.5	34
33	Formation of long-lived Rydberg states of H2 at K impregnated surfaces. Chemical Physics, 2000, 261, 481-488.	1.9	33
34	Stimulated laser Raman processes in low-density Rydberg matter: Wave number and intensity blueshifts. Physical Review A, 2000, 63, .	2.5	31
35	Rydberg states of cesium in the flux from surfaces at high temperatures. Surface Science, 1989, 211-212, 263-270.	1.9	30
36	Field ionisation of excited alkali atoms emitted from catalyst surfaces. Applied Surface Science, 1992, 55, 303-308.	6.1	30

#	Article	IF	CITATIONS
37	Rydberg Matter of K and N2: angular dependence of the time-of-flight for neutral and ionized clusters formed in Coulomb explosions. International Journal of Mass Spectrometry, 2002, 220, 127-136.	1.5	30
38	Spontaneous ejection of high-energy particles from ultra-dense deuterium D(0). International Journal of Hydrogen Energy, 2015, 40, 10559-10567.	7.1	30
39	Apparatus with nanosecond field transition times for field reversal studies of surface processes at high temperatures. Review of Scientific Instruments, 1981, 52, 63-67.	1.3	29
40	Alkali promotor function in heterogeneous catalysis: Possibility of interaction in the form of Rydberg states. Applied Surface Science, 1989, 40, 151-154.	6.1	29
41	Stimulated emission in Rydberg Matter – a thermal ultra-broadband tunable laser. Chemical Physics Letters, 2003, 376, 812-817.	2.6	29
42	Ultra-dense deuterium: A possible nuclear fuel for inertial confinement fusion (ICF). Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3067-3070.	2.1	29
43	Laser-mass spectrometry study of ultra-dense protium p(â^'1) with variable time-of-flight energy and flight length. International Journal of Mass Spectrometry, 2013, 351, 61-68.	1.5	29
44	Rydberg matter in space: low-density condensed dark matter. Monthly Notices of the Royal Astronomical Society, 2002, 333, 360-364.	4.4	28
45	Cesium ion desorption from graphite surfaces: Kinetics and dynamics of diffusion and desorption steps. Surface Science, 1986, 173, 264-282.	1.9	27
46	Rotational spectra of large Rydberg Matter clusters K37, K61 and K91 give trends in K–K bond distances relative to electron orbit radius. Journal of Molecular Structure, 2008, 885, 122-130.	3.6	26
47	MeV particles in a decay chain process from laser-induced processes in ultra-dense deuterium D(0). International Journal of Modern Physics E, 2015, 24, 1550026.	1.0	26
48	Nuclear particle decay in a multi-MeV beam ejected by pulsed-laser impact on ultra-dense hydrogen H(0). International Journal of Modern Physics E, 2015, 24, 1550080.	1.0	26
49	Charged particle energy spectra from laser-induced processes: Nuclear fusion in ultra-dense deuterium D(0). International Journal of Hydrogen Energy, 2016, 41, 1080-1088.	7.1	26
50	Scattering of a potassium atom beam from potassium promoted catalyst surfaces via electronically excited clusters. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1995, 34, 199-212.	1.0	24
51	Observation of the Unidentified Infrared Bands in the Laboratory: Anti-Stokes Stimulated Raman Spectroscopy of a Rydberg Matter Surface Boundary Layer. Astrophysical Journal, 2001, 548, L249-L252.	4.5	24
52	TWO-COLLECTOR TIMING OF 3–14 MeV/u PARTICLES FROM LASER-INDUCED PROCESSES IN ULTRA-DENSE DEUTERIUM. International Journal of Modern Physics E, 2013, 22, 1350089.	1.0	24
53	Simple surface ionization detector with field reversal for absolute ionization coefficient and ionic and neutral desorption measurements. Review of Scientific Instruments, 1976, 47, 1167-1171.	1.3	23
54	Deuteron energy of 15 MK in ultra-dense deuterium without plasma formation: Temperature of the interior of the Sun. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2856-2860.	2.1	23

#	Article	IF	CITATIONS
55	Cluster ions DN+ ejected from dense and ultra-dense deuterium by Coulomb explosions: Fragment rotation and D+ backscattering from ultra-dense clusters in the surface phase. International Journal of Mass Spectrometry, 2012, 310, 32-43.	1.5	23
56	Lowest state n=1 of H atom Rydberg matter: many eV energy release in Coulomb explosions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 186-191.	2.1	22
57	Field ionization of Rydberg alkali states outside iron oxide catalyst surfaces: peaked angular distributions of ions. Applied Surface Science, 1993, 64, 71-80.	6.1	21
58	Laser-induced fusion in ultra-dense deuterium D(â^'1): Optimizing MeV particle emission by carrier material selection. Nuclear Instruments & Methods in Physics Research B, 2013, 296, 66-71.	1.4	21
59	Direct observation of particles with energy >10ÂMeV/u from laser-induced processes with energy gain in ultra-dense deuterium. Laser and Particle Beams, 2013, 31, 715-722.	1.0	21
60	Heat generation above break-even from laser-induced fusion in ultra-dense deuterium. AIP Advances, 2015, 5, .	1.3	21
61	Leptons from decay of mesons in the laser-induced particle pulse from ultra-dense protium p(0). International Journal of Modern Physics E, 2016, 25, 1650085.	1.0	21
62	Efficient microcanonical sampling for triatomic molecular systems: Exact distributions verified. Journal of Chemical Physics, 1988, 88, 3571-3580.	3.0	20
63	Adsorbed Water Molecules on a K-Promoted Catalyst Surface Studied by Stimulated Micro-Raman Spectroscopy. Langmuir, 2003, 19, 5756-5762.	3.5	20
64	Clusters (N=4, 6, 12) from condensed atomic hydrogen and deuterium indicating close-packed structures in the desorbed phase at an active catalyst surface. Surface Science, 2008, 602, 3381-3387.	1.9	20
65	Superfluid ultra-dense deuterium D(â^1) on polymer surfaces: Structure and density changes at a polymer-metal boundary. Journal of Applied Physics, 2012, 111, .	2.5	20
66	Simultaneous determination of desorption parameters and barrier heights for release of previously absorbed tracer amounts of cesium and potassium from a platinum sample. Surface Science, 1987, 179, 267-282.	1.9	19
67	A classical trajectory study of inelastic scattering of NO from graphite surfaces: Rotational energy distributions. Journal of Chemical Physics, 1988, 89, 6963-6971.	3.0	19
68	Surface scattering of NO from graphite: A statistical description of energy distributions. Journal of Chemical Physics, 1990, 93, 845-853.	3.0	19
69	Electron excitation energy transfer from highly excited cesium atoms forming high Rydberg state atoms and molecules. The Journal of Physical Chemistry, 1991, 95, 1029-1034.	2.9	19
70	Angular-resolved desorption of potassium ions from basal graphite surfaces. Ionization of Rydberg species from adsorbed and molecular beam supplied atoms. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4581.	1.7	19
71	Experimental observation of an atomic hydrogen material with H–H bond distance of 150 pm suggesting metallic hydrogen. Journal of Physics Condensed Matter, 2004, 16, 7017-7023.	1.8	19
72	Deuterium Clusters D N and Mixed K–D and D–H Clusters of Rydberg Matter: High Temperatures and Strong Coupling to Ultra-Dense Deuterium. Journal of Cluster Science, 2012, 23, 95-114.	3.3	19

#	Article	IF	CITATIONS
73	Time-of-flight of He ions from laser-induced processes in ultra-dense deuterium D(0). International Journal of Mass Spectrometry, 2014, 374, 33-38.	1.5	19
74	Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0). PLoS ONE, 2017, 12, e0169895.	2.5	19
75	Ultradense protium p(0) and deuterium D(0) and their relation to ordinary Rydberg matter: a review. Physica Scripta, 2019, 94, 075005.	2.5	19
76	Condensed Atomic Hydrogen as a Possible Target in Inertial Confinement Fusion (ICF). Journal of Fusion Energy, 2008, 27, 296-300.	1.2	18
77	Emission spectroscopy of IR laser-induced processes in ultra-dense deuterium D(0): Rotational transitions in D(0) with spin values sÂ=Â2, 3 and 4. Journal of Molecular Structure, 2017, 1130, 829-836.	3.6	18
78	Existing Source for Muon-Catalyzed Nuclear Fusion Can Give Megawatt Thermal Fusion Generator. Fusion Science and Technology, 2019, 75, 208-217.	1.1	18
79	Stimulated Raman Spectroscopy of a K-Promoted Catalyst Surface:Â Spectroscopic Evidence of K* Rydberg State Formation. Langmuir, 2001, 17, 268-270.	3.5	17
80	Energy-pooling transitions to doubly excited K atoms at a promoted iron-oxide catalyst surface: more than 30 eV available for reaction. Physical Chemistry Chemical Physics, 2009, 11, 4351.	2.8	17
81	Detection of MeV particles from ultra-dense protium p(â^'1): Laser-initiated self-compression from p(1). Nuclear Instruments & Methods in Physics Research B, 2012, 278, 34-41.	1.4	17
82	Ultra-Dense Hydrogen H(â^'1) as the Cause of Instabilities in Laser Compression-Based Nuclear Fusion. Journal of Fusion Energy, 2014, 33, 348-350.	1.2	17
83	Rotational emission spectroscopy in ultra-dense hydrogen p(0) and p D (0): Groups p , pD2, p2D and (pD). Journal of Molecular Structure, 2018, 1173, 567-573.	3.6	17
84	The alkali metal atmospheres on the Moon and Mercury: Explaining the stable exospheres by heavy Rydberg Matter clusters. Planetary and Space Science, 2006, 54, 101-112.	1.7	16
85	Muon detection studied by pulse-height energy analysis: Novel converter arrangements. Review of Scientific Instruments, 2015, 86, 083306.	1.3	16
86	Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces. AIP Advances, 2016, 6, .	1.3	16
87	Decay of muons generated by laser-induced processes in ultra-dense hydrogen H(0). Heliyon, 2019, 5, e01864.	3.2	16
88	Production of ultra-dense hydrogen H(0): A novel nuclear fuel. International Journal of Hydrogen Energy, 2021, 46, 18466-18480.	7.1	16
89	Polarization effects in laser photofragmentation of Rydberg Matter clusters KNâ^— in a weak electric field. Chemical Physics Letters, 2000, 325, 264-268.	2.6	15
90	Rydberg Matter as the diffuse interstellar band (DIB) carrier in interstellar space: the model and accurate calculations of band centres. Physical Chemistry Chemical Physics, 2004, 6, 2048.	2.8	15

#	Article	IF	CITATIONS
91	Atomic Hydrogen in Condensed Form Produced by a Catalytic Process:  A Future Energy-Rich Fuel?. Energy & Fuels, 2005, 19, 2235-2239.	5.1	15
92	The diffuse interstellar band carriers in interstellar space: all intense bands calculated from He doubly excited states embedded in Rydberg Matter. Monthly Notices of the Royal Astronomical Society, 0, 384, 764-774.	4.4	15
93	Electron-positron pair production observed from laser-induced processes in ultra-dense deuterium D(-1). Laser and Particle Beams, 2014, 32, 537-548.	1.0	15
94	Phase-Delay Rabi-Flopping Spectroscopy:Â A Method Sensitive to Rydberg Species at Surfaces. Journal of Physical Chemistry A, 2004, 108, 11285-11291.	2.5	14
95	Laser-Induced Nuclear Processes in Ultra-Dense Hydrogen Take Place in Small Non-superfluid HN(0) Clusters. Journal of Cluster Science, 2019, 30, 235-242.	3.3	14
96	An electron emission study of a graphite covered platinum emitter for thermionic energy conversion: Dissolution of carbon into the bulk of the metal. Applied Surface Science, 1987, 29, 474-478.	6.1	13
97	Fast atoms and negative chain-cluster fragments from laser-induced Coulomb explosions in a super-fluid film of ultra-dense deuterium D(â~1). Physica Scripta, 2012, 86, 045601.	2.5	13
98	Meissner Effect in Ultra-Dense Protium p(lÂ=Â0, sÂ=Â2) at Room Temperature: Superconductivity in Large Clusters of Spin-Based Matter. Journal of Cluster Science, 2015, 26, 1153-1170.	3.3	13
99	Future interstellar rockets may use laser-induced annihilation reactions for relativistic drive. Acta Astronautica, 2020, 175, 32-36.	3.2	13
100	Source for excited states of alkali atoms and clusters using diffusion through a thin graphite foil. Review of Scientific Instruments, 1992, 63, 1966-1968.	1.3	12
101	Nanosecond switching, field reversal evidence of Rydberg atom desorption from surfaces. Chemical Physics, 1998, 230, 327-344.	1.9	12
102	Energy production by laser-induced annihilation in ultradense hydrogen H(0). International Journal of Hydrogen Energy, 2021, 46, 14592-14595.	7.1	12
103	Quantized Redshifts of Galaxies: Stimulated Raman Scattering in Cold Intergalactic Rydberg Matter. Astrophysics and Space Science, 2004, 291, 99-111.	1.4	11
104	Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter. Astrobiology, 2009, 9, 535-542.	3.0	11
105	Common Forms of Alkali Metals—New Rydberg Matter Clusters of Potassium and Hydrogen. Journal of Cluster Science, 2010, 21, 637-653.	3.3	10
106	Surface ionization at atmospheric pressure: partial melting of alkali salt particles. Langmuir, 1986, 2, 594-599.	3.5	9
107	Open source for excited species of alkali atoms and ions using diffusion through a thin metal foil. Review of Scientific Instruments, 1994, 65, 2034-2043.	1.3	9
108	Laser initiated detonation in Rydberg matter with a fast propagating shock wave, releasing protons with keV kinetic energy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 344, 265-270.	2.1	9

#	Article	IF	CITATIONS
109	Rydberg Matter as the dust atmosphere in comets: Spectroscopic and polarization signatures. Icarus, 2006, 180, 555-564.	2.5	9
110	Angular variation of time-of-flight of neutral clusters released from Rydberg Matter: Primary and secondary Coulomb explosion processes. Chemical Physics, 2006, 321, 215-222.	1.9	9
111	Direct observation of circular Rydberg electrons in a Rydberg matter surface layer by electronic circular dichroism. Journal of Physics Condensed Matter, 2007, 19, 276206.	1.8	9
112	Confocal laser microspectroscopic Rabi-flopping study of an iron oxide emitter surface used for Rydberg matter generation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 877-885.	3.9	9
113	Large ion clusters HN+ of Rydberg Matter: Stacks of planar clusters H7. International Journal of Mass Spectrometry, 2011, 300, 50-58.	1.5	9
114	The solar wind proton ejection mechanism: Experiments with ultradense hydrogen agree with observed velocity distributions. Journal of Geophysical Research: Space Physics, 2017, 122, 7956-7962.	2.4	9
115	Neutrons from Muon-Catalyzed Fusion and Muon-Capture Processes in an Ultradense Hydrogen H(0) Generator. Fusion Science and Technology, 2018, 74, 219-228.	1.1	9
116	Laser-induced annihilation: Relativistic particles from ultra-dense hydrogen H(0). High Energy Density Physics, 2021, 40, 100942.	1.5	9
117	Muon-catalyzed fusion and annihilation energy generation will supersede non-sustainable T + D nuclear fusion. Energy, Sustainability and Society, 2022, 12, .	3.8	9
118	Amplification by Stimulated Emission in Rydberg Matter Clusters as the Source of Intense Maser Lines in Interstellar Space. Astrophysics and Space Science, 2006, 305, 91-98.	1.4	8
119	Ultradense Hydrogen H(0) as Stable Dark Matter in the Universe: Extended Red Emission Spectra Agree with Rotational Transitions in H(0). Astrophysical Journal, 2018, 866, 107.	4.5	8
120	Exchange reactions on molecular beam detector (Ptâ€8%W) surfaces. Journal of Chemical Physics, 1974, 61, 1244-1245.	3.0	7
121	First experimental observation of IR emission from Rydberg Matter: detection of light from a deexciting layer. Chemical Physics Letters, 2003, 367, 556-560.	2.6	7
122	Vibrational transitions in Rydberg matter clusters from stimulated Raman and Rabiâ€flopping phase delay in the infrared. Journal of Raman Spectroscopy, 2008, 39, 1364-1374.	2.5	7
123	Intense ionizing radiation from laser-induced processes in ultra-dense deuterium D(-1). International Journal of Modern Physics E, 2014, 23, 1450050.	1.0	7
124	Controlling the process of muon formation for muon-catalyzed fusion: method of non-destructive average muon sign detection. EPJ Techniques and Instrumentation, 2021, 8, .	1.3	7
125	Inelastic scattering of Br2 from graphite surfaces: A Monte Carlo classical trajectory study. Journal of Chemical Physics, 1986, 85, 6163-6175.	3.0	6
126	Apparatus for efficient atomic level studies of alkali plasmas using sampling, probing, and spectroscopic methods. Review of Scientific Instruments, 1995, 66, 3244-3253.	1.3	6

#	Article	IF	CITATIONS
127	Nuclear spin transitions in the kHz range in Rydberg matter clusters give precise values of the internal magnetic field from orbiting Rydberg electrons. Chemical Physics, 2009, 358, 61-67.	1.9	6
128	Sub-nanometer distances and cluster shapes in dense hydrogen and in higher levels of hydrogen Rydberg matter by phase-delay spectroscopy. Journal of Nanoparticle Research, 2011, 13, 5535-5546.	1.9	6
129	Ultra-dense hydrogen H(0) as dark matter in the universe: new possibilities for the cosmological red-shift and the cosmic microwave background radiation. Astrophysics and Space Science, 2019, 364, 1.	1.4	6
130	Transport of bromine out from a graphite molecular beam source: A case of bulk diffusion. Journal of Applied Physics, 1985, 57, 1102-1108.	2.5	5
131	A TOFMS study of excited cesium species from a thermal plasma device. International Journal of Mass Spectrometry and Ion Processes, 1994, 134, 129-140.	1.8	5
132	Excited states of hydrogen emitted from a graphite diffusion source: Arrhenius behaviour. Chemical Physics, 1992, 159, 313-319.	1.9	4
133	Velocity distribution of Cs atoms emitted from a hot graphite-covered Ir surface after diffusion through the Ir bulk. Surface Science, 1993, 282, L370-L374.	1.9	4
134	Nanometer interatomic distances in Rydberg Matter clusters confirmed by phase-delay spectroscopy. Journal of Nanoparticle Research, 2010, 12, 273-284.	1.9	4
135	Emitter tests in an open thermionic converter with vapor injection through the collector. Journal of Applied Physics, 1986, 60, 4133-4135.	2.5	3
136	Hydrocarbon clusters from a foil diffusion source. Journal of Cluster Science, 1992, 3, 247-257.	3.3	3
137	Transport of charge and atomic particles in Rydberg state-rich plasmas. Journal Physics D: Applied Physics, 1998, 31, 434-445.	2.8	3
138	Diffuse interstellar bands (DIB): co-planar doubly excited He and metal atoms embedded in Rydberg Matter. Astrophysics and Space Science, 2011, 336, 391-412.	1.4	3
139	Diffusion and desorption steps in the transport of Br and Br2from a graphite effusion source at high temperatures, observed by molecularâ€beam mass spectrometry. Journal of Applied Physics, 1987, 61, 2849-2855.	2.5	2
140	Nuclear Processes in Dark Interstellar Matter of H(0) Decrease the Hope of Migrating to Exoplanets. Space: Science & Technology, 2021, 2021, .	2.5	0