
David A D'alessio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9170860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GIPR Is Predominantly Localized to Nonadipocyte Cell Types Within White Adipose Tissue. Diabetes, 2022, 71, 1115-1127.	0.3	20
2	Utility of Continuous Glucose Monitoring vs Meal Study in Detecting Hypoglycemia After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2095-e2102.	1.8	3
3	Slow and steady wins the race: 25 years developing the GLP-1 receptor as an effective target for weight loss. Journal of Clinical Endocrinology and Metabolism, 2022, , .	1.8	4
4	Effects of GLP-1 and GIP on Islet Function in Glucose-Intolerant, Pancreatic-Insufficient Cystic Fibrosis. Diabetes, 2022, 71, 2153-2165.	0.3	7
5	GLP-1 Receptor Blockade Reduces Stimulated Insulin Secretion in Fasted Subjects With Low Circulating GLP-1. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2500-2510.	1.8	9
6	Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes. Diabetologia, 2021, 64, 5-14.	2.9	26
7	GIP mediates the incretin effect and glucose tolerance by dual actions on $\hat{I}\pm$ cells and \hat{I}^2 cells. Science Advances, 2021, 7, .	4.7	66
8	Interpreting Normetanephrines-the Significance of Clinical Context. Journal of the Endocrine Society, 2021, 5, A138-A138.	0.1	0
9	A Lesson From 2020: Public Health Matters for Both COVID-19 and Diabetes. Diabetes Care, 2021, 44, 8-10.	4.3	8
10	Efficacy and Safety of the Glucagon Receptor Antagonist RVT-1502 in Type 2 Diabetes Uncontrolled on Metformin Monotherapy: A 12-Week Dose-Ranging Study. Diabetes Care, 2020, 43, 161-168.	4.3	24
11	Pharmacological antagonism of the incretin system protects against diet-induced obesity. Molecular Metabolism, 2020, 32, 44-55.	3.0	37
12	2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2020, 63, 221-228.	2.9	368
13	Preliminary evidence of effects of potassium chloride on a metabolomic path to diabetes and cardiovascular disease. Metabolomics, 2020, 16, 75.	1.4	2
14	Discordance between GLP-1R gene and protein expression in mouse pancreatic islet cells. Journal of Biological Chemistry, 2020, 295, 11529-11541.	1.6	25
15	Thermic effect of food and resting energy expenditure after sleeve gastrectomy for weight loss in adolescent females. Surgery for Obesity and Related Diseases, 2020, 16, 599-606.	1.0	2
16	SUN-LB124 Novel Elisa Assays Demonstrate Specificity of Islet and Intestinal Processing of Proglucagon. Journal of the Endocrine Society, 2020, 4, .	0.1	0
17	SAT-414 A Single Center Retrospective Analysis and Review of Endocrinopathies from Immune Checkpoint Inhibitors Between 2007 and 2017. Journal of the Endocrine Society, 2020, 4, .	0.1	0
18	Temporal plasticity of insulin and incretin secretion and insulin sensitivity following sleeve gastrectomy contribute to sustained improvements in glucose control. Molecular Metabolism, 2019, 28, 144-150.	3.0	10

#	Article	IF	CITATIONS
19	The Effects of Bariatric Surgery on Islet Function, Insulin Secretion, and Glucose Control. Endocrine Reviews, 2019, 40, 1394-1423.	8.9	55
20	Beta-cell sensitivity to insulinotropic gut hormones is reduced after gastric bypass surgery. Gut, 2019, 68, 1838-1845.	6.1	16
21	Role of vagal activation in postprandial glucose metabolism after gastric bypass in individuals with and without hypoglycaemia. Diabetes, Obesity and Metabolism, 2019, 21, 1513-1517.	2.2	8
22	Effect of vitamin D supplementation on cardiovascular risk in type 2 diabetes. Clinical Nutrition, 2019, 38, 2449-2453.	2.3	23
23	Sleeve gastrectomy rapidly enhances islet function independently of body weight. JCI Insight, 2019, 4, .	2.3	29
24	\hat{I}^2 Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight, 2019, 4, .	2.3	167
25	Glucagon lowers glycemia when \hat{l}^2 cells are active. JCI Insight, 2019, 4, .	2.3	97
26	Novel cancer therapies and their association with diabetes. Journal of Molecular Endocrinology, 2019, 62, R187-R199.	1.1	20
27	SAT-167 Intra-Islet Ghrelin Signaling Does Not Regulate Insulin Secretion from Adult Mice. Journal of the Endocrine Society, 2019, 3, .	0.1	0
28	Betaâ€cell sensitivity to glucose is impaired after gastric bypass surgery. Diabetes, Obesity and Metabolism, 2018, 20, 872-878.	2.2	19
29	Vitamin D Supplementation in Patients With Type 2 Diabetes: The Vitamin D for Established Type 2 Diabetes (DDM2) Study. Journal of the Endocrine Society, 2018, 2, 310-321.	0.1	33
30	Glucagon receptor as a drug target: <scp>A</scp> witches' brew of eye of newt (peptides) and toe of frog (receptors). Diabetes, Obesity and Metabolism, 2018, 20, 233-237.	2.2	11
31	Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2018, 61, 2461-2498.	2.9	1,002
32	LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Molecular Metabolism, 2018, 18, 3-14.	3.0	400
33	Deletion of the glucagon receptor gene before and after experimental diabetes reveals differential protection from hyperglycemia. Molecular Metabolism, 2018, 17, 28-38.	3.0	17
34	Enhanced Glucose Control Following Vertical Sleeve Gastrectomy Does Not Require a β-Cell Glucagon-Like Peptide 1 Receptor. Diabetes, 2018, 67, 1504-1511.	0.3	30
35	Can We RISE to the Challenge of Youth-Onset Type 2 Diabetes?. Diabetes Care, 2018, 41, 1560-1562.	4.3	10
36	Big Topics forDiabetes Carein 2018: Clinical Guidelines, Costs of Diabetes, and Information Technology. Diabetes Care, 2018, 41, 1327-1329.	4.3	4

#	Article	IF	CITATIONS
37	Interaction of GLP-1 and Ghrelin on Glucose Tolerance in Healthy Humans. Diabetes, 2018, 67, 1976-1985.	0.3	25
38	<i>Diabetes Care</i> : "Taking It to the Limit One More Time― Diabetes Care, 2017, 40, 3-6.	4.3	7
39	Central Nervous System GLP-1 Receptors Regulate Islet Hormone Secretion and Glucose Homeostasis in Male Rats. Endocrinology, 2017, 158, 2124-2133.	1.4	30
40	Acute administration of acyl, but not desacyl ghrelin, decreases blood pressure in healthy humans. European Journal of Endocrinology, 2017, 176, 123-132.	1.9	21
41	The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metabolism, 2017, 25, 927-934.e3.	7.2	178
42	β-Cell Function Over Time in Adolescents With New Type 2 Diabetes and Obese Adolescents Without Diabetes. Journal of Adolescent Health, 2017, 61, 703-708.	1.2	10
43	Metformin Use May Moderate the Effect of DPP-4 Inhibitors on Cardiovascular Outcomes. Diabetes Care, 2017, 40, 1787-1789.	4.3	44
44	One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nature Biomedical Engineering, 2017, 1, .	11.6	87
45	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	1.7	53
46	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	1.7	10
47	Baseline factors associated with glycaemic response to treatment with onceâ€weekly dulaglutide in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2016, 18, 1138-1142.	2.2	17
48	Vitamin D status of black and white Americans and changes in vitamin D metabolites after varied doses of vitamin D supplementation. American Journal of Clinical Nutrition, 2016, 104, 205-214.	2.2	78
49	Ghrelin Impairs Prandial Glucose Tolerance and Insulin Secretion in Healthy Humans Despite Increasing GLP-1. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2405-2414.	1.8	35
50	Bariatric/metabolic surgery for diabetes: Incorporating a powerful treatment into standard care. Obesity, 2016, 24, 1205-1206.	1.5	2
51	Diabetes Care: "Lagniappe―and "Seeing Is Believingâ€I. Diabetes Care, 2016, 39, 1069-1071.	4.3	1
52	Bariatric Surgery: A Potential Treatment for Type 2 Diabetes in Youth. Diabetes Care, 2016, 39, 934-940.	4.3	27
53	The incretin effect in obese adolescents with and without type 2 diabetes: impaired or intact?. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E774-E781.	1.8	18
54	ls <scp>GLP</scp> â€1 a hormone: Whether and When?. Journal of Diabetes Investigation, 2016, 7, 50-55.	1.1	74

#	Article	IF	CITATIONS
55	Gastric bypass alters both glucoseâ€dependent and glucoseâ€independent regulation of islet hormone secretion. Obesity, 2015, 23, 2046-2052.	1.5	32
56	Insulin Sensitivity and β-Cell Function Improve after Gastric Bypass in Severely Obese Adolescents. Journal of Pediatrics, 2015, 167, 1042-1048.e1.	0.9	41
57	Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans. Diabetes, 2015, 64, 2624-2635.	0.3	108
58	Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin. Diabetes, 2015, 64, 2457-2466.	0.3	27
59	Surgical Treatment of Diabetes: Making a Case for a Pragmatic Approach. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2536-2538.	1.8	0
60	An Innate Disposition for a Healthier Gut: GLP-1R Signaling in Intestinal Epithelial Lymphocytes. Diabetes, 2015, 64, 2329-2331.	0.3	2
61	Rapid Deterioration of Insulin Secretion in Obese Adolescents Preceding the Onset of Type 2 Diabetes. Journal of Pediatrics, 2015, 166, 672-678.	0.9	25
62	Diet-Induced Obese Mice Retain Endogenous Leptin Action. Cell Metabolism, 2015, 21, 877-882.	7.2	111
63	β-Cell Sensitivity to CLP-1 in Healthy Humans Is Variable and Proportional to Insulin Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2489-2496.	1.8	35
64	Physiology of Proglucagon Peptides: Role of Glucagon and GLP-1 in Health and Disease. Physiological Reviews, 2015, 95, 513-548.	13.1	340
65	Mouse handling limits the impact of stress on metabolic endpoints. Physiology and Behavior, 2015, 150, 31-37.	1.0	79
66	Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. American Journal of Clinical Nutrition, 2015, 102, 1604-1614.	2.2	92
67	The Role of β Cell Glucagon-like Peptide-1 Signaling in Glucose Regulation and Response to Diabetes Drugs. Cell Metabolism, 2014, 19, 1050-1057.	7.2	139
68	Meal feeding improves oral glucose tolerance in male rats and causes adaptations in postprandial islet hormone secretion that are independent of plasma incretins or glycemia. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E784-E792.	1.8	8
69	Evidence from a single individual that increased plasma GLP-1 and GLP-1-stimulated insulin secretion after gastric bypass are independent of foregut exclusion. Diabetologia, 2014, 57, 1495-1499.	2.9	16
70	Acute Administration of Unacylated Ghrelin Has No Effect on Basal or Stimulated Insulin Secretion in Healthy Humans. Diabetes, 2014, 63, 2309-2319.	0.3	42
71	Effects of glucagon like peptide-1 to mediate glycemic effects of weight loss surgery. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 171-179.	2.6	31
72	Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E424-E432.	1.8	143

#	Article	IF	CITATIONS
73	Blockade of Glucagon-like Peptide 1 Receptor Corrects Postprandial Hypoglycemia After Gastric Bypass. Gastroenterology, 2014, 146, 669-680.e2.	0.6	229
74	Altered Islet Function and Insulin Clearance Cause Hyperinsulinemia in Gastric Bypass Patients With Symptoms of Postprandial Hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2008-2017.	1.8	107
75	Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. Journal of Clinical Investigation, 2014, 124, 2456-2463.	3.9	293
76	Cooperation between brain and islet in glucose homeostasis and diabetes. Nature, 2013, 503, 59-66.	13.7	261
77	Improved Glycemic Control Enhances the Incretin Effect in Patients With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4702-4708.	1.8	13
78	GLP-1R Agonism Enhances Adjustable Gastric Banding in Diet-Induced Obese Rats. Diabetes, 2013, 62, 3261-3267.	0.3	19
79	Effect of vertical sleeve gastrectomy on food selection and satiation in rats. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1076-E1084.	1.8	68
80	Hyperphagia and Increased Fat Accumulation in Two Models of Chronic CNS Glucagon-Like Peptide-1 Loss of Function. Journal of Neuroscience, 2011, 31, 3904-3913.	1.7	135
81	Weight-Independent Changes in Blood Clucose Homeostasis After Gastric Bypass or Vertical Sleeve Gastrectomy in Rats. Gastroenterology, 2011, 141, 950-958.	0.6	264
82	Similar effects of roux-en-Y gastric bypass and vertical sleeve gastrectomy on glucose regulation in rats. Physiology and Behavior, 2011, 105, 120-123.	1.0	63
83	What if Gut Hormones Aren't Really Hormones: DPP-4 Inhibition and Local Action of GLP-1 in the Gastrointestinal Tract. Endocrinology, 2011, 152, 2925-2926.	1.4	23
84	Gastric Bypass Surgery Enhances Glucagon-Like Peptide 1–Stimulated Postprandial Insulin Secretion in Humans. Diabetes, 2011, 60, 2308-2314.	0.3	294
85	The Contribution of Enteroinsular Hormones to the Pathogenesis of Type 2 Diabetes Mellitus. Current Diabetes Reports, 2010, 10, 192-198.	1.7	4
86	The Effect of Duodenal–Jejunal Bypass on Glucose-Dependent Insulinotropic Polypeptide Secretion in Wistar Rats. Obesity Surgery, 2010, 20, 768-775.	1.1	8
87	Taking Aim at Islet Hormones With GLP-1: Is Insulin or Glucagon the Better Target?. Diabetes, 2010, 59, 1572-1574.	0.3	9
88	Treatment with the Dipeptidyl Peptidase-4 Inhibitor Vildagliptin Improves Fasting Islet-Cell Function in Subjects with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 81-88.	1.8	83
89	Duodenal-Jejunal Exclusion Improves Glucose Tolerance in the Diabetic, Goto-Kakizaki Rat by a GLP-1 Receptor-Mediated Mechanism. Journal of Gastrointestinal Surgery, 2009, 13, 1762-1772.	0.9	107
90	Effects of Gastric Bypass and Gastric Banding on Glucose Kinetics and Gut Hormone Release. Obesity, 2008, 16, 298-305.	1.5	194

#	Article	IF	CITATIONS
91	Distribution of glucagon-like peptide-1 immunoreactivity in the hypothalamic paraventricular and supraoptic nuclei. Journal of Chemical Neuroanatomy, 2008, 36, 144-149.	1.0	68
92	Intestinal Hormones and Regulation of Satiety: The Case for CCK, GLPâ€1, PYY, and Apo Aâ€IV. Journal of Parenteral and Enteral Nutrition, 2008, 32, 567-568.	1.3	38
93	Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 in the lymph system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2163-R2169.	0.9	76
94	β-Cell Function, Insulin Sensitivity, and Glucose Tolerance in Obese Diabetic and Nondiabetic Adolescents and Young Adults. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 185-191.	1.8	74
95	Utilizing the GLP-1 signaling system to treat diabetes: Sorting through the pharmacologic approaches. Current Diabetes Reports, 2005, 5, 346-352.	1.7	6
96	The Role of Central Glucagon-Like Peptide-1 in Mediating the Effects of Visceral Illness: Differential Effects in Rats and Mice. Endocrinology, 2005, 146, 458-462.	1.4	83
97	New ways in which GLP-1 can regulate glucose homeostasis. Journal of Clinical Investigation, 2005, 115, 3406-3408.	3.9	39
98	Gut peptides in the treatment of diabetes mellitus. Expert Opinion on Investigational Drugs, 2004, 13, 177-188.	1.9	23
99	Clucagon-like peptide 1: evolution of an incretin into a treatment for diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E882-E890.	1.8	65
100	CNS Glucagon-Like Peptide-1 Receptors Mediate Endocrine and Anxiety Responses to Interoceptive and Psychogenic Stressors. Journal of Neuroscience, 2003, 23, 6163-6170.	1.7	193
101	Thrittene, Homologous with Somatostatin-28(1–13), Is a Novel Peptide in Mammalian Gut and Circulation. Endocrinology, 2002, 143, 2599-2609.	1.4	18
102	Activation of the Parasympathetic Nervous System Is Necessary for Normal Meal-Induced Insulin Secretion in Rhesus Macaques1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1253-1259.	1.8	76
103	Inhibition of Central Amylin Signaling Increases Food Intake and Body Adiposity in Rats. Endocrinology, 2001, 142, 5035-5038.	1.4	152
104	Fasting and Postprandial Concentrations of Somatostatin-28 and Somatostatin-14 in Type II Diabetes in Men. Diabetes, 1990, 39, 1198-1202.	0.3	23
105	Inhibition of Central Amylin Signaling Increases Food Intake and Body Adiposity in Rats. , 0, .		56