Shohei Yamaoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9170637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
2	Expression Cloning of a Human cDNA Restoring Sphingomyelin Synthesis and Cell Growth in Sphingomyelin Synthase-defective Lymphoid Cells. Journal of Biological Chemistry, 2004, 279, 18688-18693.	3.4	202
3	Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Current Biology, 2020, 30, 573-588.e7.	3.9	160
4	Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. Journal of Experimental Medicine, 2005, 202, 249-259.	8.5	142
5	Mitochondrial Dysfunction and Increased Reactive Oxygen Species Impair Insulin Secretion in Sphingomyelin Synthase 1-null Mice. Journal of Biological Chemistry, 2011, 286, 3992-4002.	3.4	129
6	Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6472-6477.	7.1	125
7	Identification and Dynamics of <i>Arabidopsis</i> Adaptor Protein-2 Complex and Its Involvement in Floral Organ Development. Plant Cell, 2013, 25, 2958-2969.	6.6	121
8	Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants. Current Biology, 2018, 28, 479-486.e5.	3.9	87
9	Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Molecular Biology, 1999, 41, 679-685.	3.9	84
10	EMB2473/MIRO1, an <i>Arabidopsis</i> Miro GTPase, Is Required for Embryogenesis and Influences Mitochondrial Morphology in Pollen. Plant Cell, 2008, 20, 589-601.	6.6	73
11	Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Research, 2000, 9, 179-185.	2.4	71
12	Construction of male and female PAC genomic libraries suitable for identification of Yâ€chromosomeâ€specific clones from the liverwort, <i>Marchantia polymorpha</i> . Plant Journal, 2000, 24, 421-428.	5.7	65
13	Development and Molecular Genetics of <i>Marchantia polymorpha</i> . Annual Review of Plant Biology, 2021, 72, 677-702.	18.7	61
14	Peroxisomes Are Involved in Biotin Biosynthesis in Aspergillus and Arabidopsis. Journal of Biological Chemistry, 2011, 286, 30455-30461.	3.4	60
15	A <i>cis</i> â€acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO Journal, 2019, 38, .	7.8	59
16	Building new insights in plant gametogenesis from an evolutionary perspective. Nature Plants, 2019, 5, 663-669.	9.3	46
17	MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis. Plant Cell Reports, 2011, 30, 239-244.	5.6	38
18	Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Current Biology, 2021, 31, 5522-5532 e7	3.9	36

Shohei Υαμαοκα

#	Article	IF	CITATIONS
19	An Early Arising Role of the MicroRNA156/529-SPL Module in Reproductive Development Revealed by the Liverwort Marchantia polymorpha. Current Biology, 2019, 29, 3307-3314.e5.	3.9	34
20	Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0146717.	2.5	29
21	Coexistence of nuclear DNA-encoded tRNAVal(AAC) and mitochondrial DNA- encoded tRNAVal(UAC) in mitochondria of a liverwort Marchantia polymorpha. Nucleic Acids Research, 1998, 26, 2168-2172.	14.5	28
22	Coordination between growth and stress responses by DELLA in the liverwort Marchantia polymorpha. Current Biology, 2021, 31, 3678-3686.e11.	3.9	28
23	The mitochondrial Ras-related GTPase Miro: views from inside and outside the metazoan kingdom. Frontiers in Plant Science, 2014, 5, 350.	3.6	27
24	Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. ELife, 2021, 10, .	6.0	26
25	The μ Subunit of <i>Arabidopsis</i> Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins. Molecular Plant-Microbe Interactions, 2016, 29, 345-351.	2.6	24
26	Diminished Auxin Signaling Triggers Cellular Reprogramming by Inducing a Regeneration Factor in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 384-400.	3.1	23
27	A mutant with constitutive sexual organ development in Marchantia polymorpha L Sexual Plant Reproduction, 2004, 16, 253-257.	2.2	17
28	Loss of CG methylation in Marchantia polymorpha causes disorganization of cell division and reveals unique DNA methylation regulatory mechanisms of non-CG methylation. Plant and Cell Physiology, 2018, 59, 2421-2431.	3.1	15
29	Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha. Plant Reproduction, 2021, 34, 297-306.	2.2	9
30	Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. Plant and Cell Physiology, 2020, 61, 470-480.	3.1	7