Darja Lisjak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9170378/publications.pdf

Version: 2024-02-01

117 papers	2,874 citations	30 h-index	206112 48 g-index
120 all docs	120 docs citations	120 times ranked	2723 citing authors

#	Article	IF	CITATIONS
1	Isotropic to nematic transition in alcohol ferrofluids of barium hexaferrite nanoplatelets. Journal of Molecular Liquids, 2022, 348, 118038.	4.9	6
2	NaYF ₄ -based upconverting nanoparticles with optimized phosphonate coatings for chemical stability and viability of human endothelial cells. Methods and Applications in Fluorescence, 2022, 10, 014001.	2.3	1
3	Magnetic dynamics in suspensions of ferrimagnetic platelets. Journal of Molecular Liquids, 2022, 360, 119484.	4.9	3
4	New Insights into Amino-Functionalization of Magnetic Nanoplatelets with Silanes and Phosphonates. Nanomaterials, 2022, 12, 2123.	4.1	1
5	Formation of phosphonate coatings for improved chemical stability of upconverting nanoparticles under physiological conditions. Dalton Transactions, 2021, 50, 6588-6597.	3.3	7
6	Preparation of Barium-Hexaferrite/Gold Janus Nanoplatelets Using the Pickering Emulsion Method. Nanomaterials, 2021, 11, 2797.	4.1	0
7	Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry, 2020, 132, 107440.	4.6	24
8	A new polymorph of strontium hexaferrite stabilized at the nanoscale. CrystEngComm, 2020, 22, 7113-7122.	2.6	6
9	Magnetic Heating of Nanoparticles Applied in the Synthesis of a Magnetically Recyclable Hydrogenation Nanocatalyst. Nanomaterials, 2020, 10, 1142.	4.1	11
10	Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruption of phospholipid membranes. Journal of Colloid and Interface Science, 2020, 579, 508-519.	9.4	15
11	Investigation of structural, microstructural and magnetic properties of Yb Y1-F3 solid solutions. Journal of Physics and Chemistry of Solids, 2020, 142, 109449.	4.0	0
12	Formation of Fe(III)-phosphonate Coatings on Barium Hexaferrite Nanoplatelets for Porous Nanomagnets. ACS Omega, 2020, 5, 14086-14095.	3. 5	9
13	The influence of polydispersity on the structural properties of the isotropic phase of magnetic nanoplatelets. Journal of Molecular Liquids, 2020, 312, 113293.	4.9	5
14	Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403). Advanced Healthcare Materials, 2019, 8, e1801233.	7.6	63
15	Evolution of the microstructure during the early stages of sintering barium hexaferrite nanoplatelets. Journal of the European Ceramic Society, 2019, 39, 4831-4841.	5.7	10
16	Magnetic Nanoplatelets for High Contrast Cardiovascular Imaging by Magnetically Modulated Optical Coherence Tomography. ChemPhotoChem, 2019, 3, 503-503.	3.0	0
17	Optical second harmonic generation in a ferromagnetic liquid crystal. Soft Matter, 2019, 15, 8758-8765.	2.7	2
18	Electrostatic Interactions between Barium Hexaferrite Nanoplatelets in Alcohol Suspensions. Journal of Physical Chemistry C, 2019, 123, 23272-23279.	3.1	13

#	Article	IF	CITATIONS
19	Evolution of nematic and ferromagnetic ordering in suspensions of magnetic nanoplatelets. Soft Matter, 2019, 15, 5412-5420.	2.7	16
20	Magnetic Nanoplatelets for High Contrast Cardiovascular Imaging by Magnetically Modulated Optical Coherence Tomography. ChemPhotoChem, 2019, 3, 529-539.	3.0	16
21	A functionalization strategy for the dispersion of permanently magnetic barium-hexaferrite nanoplatelets in complex biological media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 119-127.	4.7	15
22	Incorporation of Sc into the structure of barium-hexaferrite nanoplatelets and its extraordinary finite-size effect on the magnetic properties. Acta Materialia, 2019, 172, 84-91.	7.9	24
23	Magnetically tunable optical diffraction gratings based on a ferromagnetic liquid crystal. Optics Express, 2019, 27, 8900.	3.4	12
24	Magnetically controllable random laser in ferromagnetic nematic liquid crystals. Optics Express, 2019, 27, 24426.	3.4	19
25	Magneto-optic dynamics in a ferromagnetic nematic liquid crystal. Physical Review E, 2018, 97, 012701.	2.1	30
26	Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Progress in Materials Science, 2018, 95, 286-328.	32.8	229
27	Comparison of dynamic behavior of ferroelectric and ferromagnetic nematic suspensions. Journal of Molecular Liquids, 2018, 267, 377-383.	4.9	9
28	Discrete evolution of the crystal structure during the growth of Ba-hexaferrite nanoplatelets. Nanoscale, 2018, 10, 14480-14491.	5.6	27
29	Director reorientation dynamics of ferromagnetic nematic liquid crystals. Soft Matter, 2018, 14, 7180-7189.	2.7	17
30	Ferromagnetic nematic liquid crystals. Liquid Crystals Reviews, 2017, 5, 1-33.	4.1	86
31	Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Transactions, 2017, 46, 6975-6984.	3.3	35
32	Optically Detected Degradation of NaYF ₄ :Yb,Tm-Based Upconversion Nanoparticles in Phosphate Buffered Saline Solution. Langmuir, 2017, 33, 553-560.	3.5	55
33	Field-controlled structures in ferromagnetic cholesteric liquid crystals. Science Advances, 2017, 3, e1701336.	10.3	31
34	Dynamic Magneto-optic Coupling in a Ferromagnetic Nematic Liquid Crystal. Physical Review Letters, 2017, 119, 097802.	7.8	29
35	Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets. Optics Express, 2017, 25, 1073.	3.4	34
36	Suppression of the exaggerated growth of barium ferrite nanoparticles from solution using a partial substitution of Sc3+ for Fe3+. Journal of Nanoparticle Research, 2016, 18 , 1 .	1.9	6

#	Article	lF	CITATIONS
37	Dissolution Mechanism of Upconverting AYF ₄ :Yb,Tm (A = Na or K) Nanoparticles in Aqueous Media. Langmuir, 2016, 32, 8222-8229.	3.5	49
38	Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nature Communications, 2016, 7, 10394.	12.8	94
39	Magnetodielectric and magnetoviscosity response of a ferromagnetic liquid crystal at low magnetic fields. Applied Physics Letters, 2015, 106, .	3.3	37
40	Xâ€ray Absorption Spectroscopy Studies of the Roomâ€Temperature Ferromagnetic Feâ€Doped 6H–BaTiO ₃ . Journal of the American Ceramic Society, 2015, 98, 1156-1161.	3.8	7
41	Monolithic Magneto-Optical Nanocomposites of Barium Hexaferrite Platelets in PMMA. Scientific Reports, 2015, 5, 11395.	3.3	33
42	Ferromagnetic liquid crystals for magnetic field visualisation. Liquid Crystals, 2015, 42, 1684-1688.	2.2	20
43	Dissolution of upconverting fluoride nanoparticles in aqueous suspensions. RSC Advances, 2015, 5, 27393-27397.	3.6	44
44	Influence of the Synthesis Parameters on the Properties of NaYF4:Yb3+,Tm3+ Nanoparticles. Acta Chimica Slovenica, 2015, 62, 789-795.	0.6	4
45	The Lowâ€Temperature Cosintering of Cobalt Ferrite and Lead Zirconate Titanate Ceramic Composites. Journal of the American Ceramic Society, 2014, 97, 74-80.	3.8	4
46	A surface-chemistry study of barium ferrite nanoplates with DBSa-modified surfaces. Applied Surface Science, 2014, 305, 366-374.	6.1	9
47	Control of barium ferrite decomposition during spark plasma sintering: Towards nanostructured samples with anisotropic magnetic properties. Journal of the European Ceramic Society, 2014, 34, 337-346.	5.7	20
48	The influence of material properties on the assembly of ferrite nanoparticles into 3D structures. Materials Chemistry and Physics, 2014, 148, 1131-1138.	4.0	6
49	Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal. Soft Matter, 2014, 10, 9065-9072.	2.7	92
50	Influence of the Morphology of Ferrite Nanoparticles on the Directed Assembly into Magnetically Anisotropic Hierarchical Structures. Langmuir, 2014, 30, 6588-6595.	3.5	14
51	The influence of magnetic interactions and shape anisotropy on the alignment and assembly of BaFe12O19 and Er2O3 nanoplates. Materials Chemistry and Physics, 2014, 148, 311-318.	4.0	1
52	Synthesis and characterization of Mg1+xFe2â^2xTixO4 nanoparticles with an adjustable Curie point. Journal of Magnetism and Magnetic Materials, 2014, 350, 124-128.	2.3	36
53	Cation Order–Disorder Transition in Fe-Doped 6H-BaTiO ₃ for Dilute Room-Temperature Ferromagnetism. Chemistry of Materials, 2013, 25, 3544-3550.	6.7	23
54	Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature, 2013, 504, 237-241.	27.8	254

#	Article	IF	CITATIONS
55	Photoelectrochemical Properties of Cadmium Chalcogenide-Sensitized Textured Porous Zinc Oxide Plate Electrodes. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1113-1121.	8.0	57
56	The Alignment of Barium Ferrite Nanoparticles from Their Suspensions in Electric and Magnetic Fields. Journal of Physical Chemistry B, 2013, 117, 1644-1650.	2.6	33
57	Hydrothermal synthesis of La1â^'XSrXMnO3 dendrites. Journal of Crystal Growth, 2013, 375, 78-83.	1.5	10
58	Structural and morphological transformations of textural porous zinc sulfide microspheres. Microporous and Mesoporous Materials, 2013, 165, 185-192.	4.4	18
59	Formation of Columnar Structures by the Magnetically Directed Assembly of Cobalt Ferrite Nanoparticles. IEEE Transactions on Magnetics, 2012, 48, 3303-3306.	2.1	6
60	Thermal Treatment Influence on the Magnetic Properties and Degree of Orientation of BaFe12O19 Films. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2819-2824.	1.8	1
61	Chemical Substitution—An Alternative Strategy for Controlling the Particle Size of Barium Ferrite. Crystal Growth and Design, 2012, 12, 5174-5179.	3.0	56
62	The influence of processing parameters on the orientation of barium ferrite platelets during electrophoretic deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 403, 139-147.	4.7	7
63	The Lowâ€Temperature Sintering Mechanism of <scp><scp>Sr</scp> Hexaferrite Using the Addition of <scp><scp>CuO</scp> Journal of the American Ceramic Society, 2012, 95, 3025-3030.</scp></scp>	3.8	11
64	The low-temperature sintering of M-type hexaferrites. Journal of the European Ceramic Society, 2012, 32, 3351-3360.	5.7	16
65	Directed Assembly of BaFe ₁₂ O ₁₉ Particles and the Formation of Magnetically Oriented Films. Langmuir, 2011, 27, 14014-14024.	3.5	18
66	Novel method for fabrication of metal- or oxide-nanoparticle doped silica-based specialty optical fibers. , 2011 , , .		1
67	Preparation of Oriented Barium Hexaferrite Films by Electrophoretic Deposition. Journal of the American Ceramic Society, 2011, 94, 3373-3379.	3.8	22
68	The hydrothermal synthesis of super-paramagnetic barium hexaferrite particles. Materials Chemistry and Physics, 2011, 127, 415-419.	4.0	58
69	Hexaferrite/polyethylene composite coatings prepared with flame spraying. Materials Letters, 2011, 65, 534-536.	2.6	11
70	The stability of BaFe12O19 nanoparticles in polar solvents. Journal of Materials Science, 2011, 46, 2851-2859.	3.7	8
71	Hexaferrite/Polyester Composite Coatings for Electromagnetic-Wave Absorbers. Journal of Thermal Spray Technology, 2011, 20, 638-644.	3.1	8
72	Preparation and characterization of ZnSn-substituted barium ferrite thin films. Journal of Magnetism and Magnetic Materials, 2011, 323, 1465-1469.	2.3	1

#	Article	IF	CITATIONS
73	Characterisation of plasma-sprayed SrFe12O19 coatings for electromagnetic wave absorption. Journal of the European Ceramic Society, 2011, 31, 1439-1449.	5 . 7	27
74	Preparation and characterisation of magnetically ordered columnar structures of barium ferrite particles. Journal of Experimental Nanoscience, 2011, 6, 362-373.	2.4	4
75	Development of Ba-hexaferrite coatings for electromagnetic wave absorption applications. Surface and Coatings Technology, 2010, 205, 1015-1020.	4.8	16
76	Surface analyses of barium hexaferrite particles for magnetic suspensions. Surface and Interface Analysis, 2010, 42, 1217-1221.	1.8	3
77	The Concept of a Low‶emperature Synthesis for Superparamagnetic BaFe ₁₂ O ₁₉ Particles. Journal of the American Ceramic Society, 2010, 93, 1602-1607.	3.8	26
78	Magnetic Phase Formation in CoTiâ€Substituted Ba Hexaferrite Coatings Prepared with Atmospheric Plasma Spraying. Journal of the American Ceramic Society, 2010, 93, 2579-2584.	3.8	7
79	Oriented Barium Hexaferrite Thick Films Prepared by Electrophoretic Deposition in a Magnetic Field. Advances in Science and Technology, 2010, 67, 92-97.	0.2	1
80	The dispersion of single-domain BaFe12O19 particles in water. Journal of Applied Physics, 2009, 105, 084908.	2.5	5
81	Thermal spraying of Co, Ti-substituted Ba-hexaferrite coatings for electromagnetic wave absorption applications. Surface and Coatings Technology, 2009, 203, 3312-3319.	4.8	36
82	The Preparation of Barium Hexaferrite Coatings Using HVOF. Journal of the American Ceramic Society, 2009, 92, 818-824.	3.8	5
83	Preparation of barium hexaferrite coatings using atmospheric plasma spraying. Journal of the European Ceramic Society, 2009, 29, 2333-2341.	5.7	32
84	Barium hexaferrite suspensions for electrophoretic deposition. Journal of Colloid and Interface Science, 2009, 337, 456-463.	9.4	29
85	Interference effect between superparamagnetic and spin glass correlated moments in a system of dispersed Co ₃ O ₄ nanocrystallites. Journal of Physics Condensed Matter, 2009, 21, 095303.	1.8	10
86	Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions. Nanotechnology, 2009, 20, 315605.	2.6	87
87	A two-step synthesis of NiZn–W hexaferrites. Journal of the European Ceramic Society, 2008, 28, 2057-2062.	5.7	28
88	Barium Hexaferrite Prepared by Hydrothermal Synthesis. Materials Science Forum, 2007, 555, 183-187.	0.3	2
89	The influence of microstructure on the microwave absorption of Co–U hexaferrites. Journal of Magnetism and Magnetic Materials, 2007, 310, 2558-2560.	2.3	21
90	The application of effective-medium theory for the nondestructive characterization of ceramic composites. Journal of the European Ceramic Society, 2007, 27, 1071-1076.	5.7	6

#	Article	IF	Citations
91	The mechanism of the low-temperature formation of barium hexaferrite. Journal of the European Ceramic Society, 2007, 27, 4515-4520.	5.7	51
92	Hydrothermal Synthesis of Baâ€Hexaferrite Nanoparticles. Journal of the American Ceramic Society, 2007, 90, 2057-2061.	3.8	79
93	Influence of Ag on the Composition and Electromagnetic Properties of Low-Temperature Cofired Hexaferrites. Journal of the American Ceramic Society, 2007, 90, 3121-3126.	3.8	7
94	Thermal Stability of (Co,Cu)Z-Hexaferrite and Its Compatibility with Ag at 900°C. Journal of the American Ceramic Society, 2007, 90, 3517-3521.	3.8	12
95	Ferromagnetic Resonance and Microwave Behavior of ASn-Substituted (A\${=}\$Ni-Co-Zn) BaM-Hexaferrites. IEEE Transactions on Magnetics, 2007, 43, 2636-2638.	2.1	18
96	The influence of the coprecipitation conditions on the low-temperature formation of barium hexaferrite. Journal of Materials Science, 2007, 42, 8606-8612.	3.7	14
97	The low-temperature formation of barium hexaferrites. Journal of the European Ceramic Society, 2006, 26, 3681-3686.	5.7	48
98	The Synthesis and Properties of Magnetic Nanoparticles. ChemInform, 2006, 37, no.	0.0	0
99	Influence of microstructure and preparation methods on the magneto-crystalline structure and magnetic properties of submicron barium hexaferrite powders. Journal of Materials Research, 2006, 21, 2606-2610.	2.6	4
100	Compatibility Studies of Z- and Y-Type BaCo Hexaferrites for Low-Temperature Co-Firing with Ag. Advances in Science and Technology, 2006, 45, 2539-2544.	0.2	1
101	Thermal instability of Co-substituted barium hexaferrites with U-type structure. Journal of Materials Research, 2006, 21, 420-427.	2.6	28
102	Microwave ferromagnetic resonance of cobalt and nickel substituted U-type hexaferrites. IEEE Transactions on Magnetics, 2005, 41, 3472-3474.	2.1	19
103	The Synthesis and Properties of Magnetic Nanoparticles. Materials Science Forum, 2005, 494, 129-136.	0.3	11
104	The formation of barium hexaferrites using coprecipitation methods. , 2005, , .		0
105	Formation of U-type hexaferrites. Journal of Materials Research, 2004, 19, 2462-2470.	2.6	52
106	Synthesis and characterization of A–Sn-substituted (A=Zn, Ni, Co) BaM–hexaferrite powders and ceramics. Journal of the European Ceramic Society, 2004, 24, 1841-1845.	5.7	48
107	The thermal stability range and magnetic properties of U-type hexaferrites. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1817-E1819.	2.3	35
108	Synthesis and characterization of Zn2U (Ba4Zn2Fe36O60) hexaferrite powder. Journal of Applied Physics, 2003, 93, 8011-8013.	2.5	38

#	Article	IF	CITATIONS
109	Analytical Electron Microscopy Study of a ZnO-NiO Solid Solution. Mikrochimica Acta, 2000, 132, 289-294.	5.0	5
110	Composite ceramics with a positive temperature coefficient of electrical resistivity effect. Journal of Materials Research, 2000, 15, 417-428.	2.6	18
111	Nanometerâ€Scale Variations in Interface Potential by Scanning Probe Microscopy. Journal of the American Ceramic Society, 1999, 82, 1941-1944.	3.8	38
112	Ageing of ZnO–NiO ceramics. Journal of Materials Science, 1998, 33, 4201-4206.	3.7	5
113	Investigation of the Microscopical Origin of the PTCR Anomaly in Two Phase Zn-Ni-O Ceramics. Key Engineering Materials, 1997, 132-136, 1325-1328.	0.4	0
114	Electrical properties of Zn-Ni-O ceramics. Journal of Materials Science Letters, 1997, 16, 304-307.	0.5	4
115	Investigation of the PTCR effect in ZnO–NiO two-phase ceramics. Solid State Ionics, 1997, 99, 125-135.	2.7	31
116	Origin of the Positive Temperature Coefficient of Resistivity Anomaly in the ZnOâ€NiO System. Journal of the American Ceramic Society, 1997, 80, 1741-1748.	3.8	6
117	Experimental analysis of short-circuit line technique for measuring permeability of ferromagnetic materials. , 0, , .		2