Giulia Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/917026/publications.pdf

Version: 2024-02-01

73 4,551 38 66
papers citations h-index g-index

74 74 74 3899

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC membranes: An experimental and computational study. Journal of Colloid and Interface Science, 2022, 605, 110-119.	5.0	15
2	Membrane Phase Drives the Assembly of Gold Nanoparticles on Biomimetic Lipid Bilayers. Journal of Physical Chemistry C, 2022, 126, 4483-4494.	1.5	15
3	Ion-bridges and lipids drive aggregation of same-charge nanoparticles on lipid membranes. Nanoscale, 2022, 14, 6912-6921.	2.8	9
4	Non-disruptive uptake of anionic and cationic gold nanoparticles in neutral zwitterionic membranes. Scientific Reports, 2021, 11, 1256.	1.6	20
5	Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. Journal of Physical Chemistry Letters, 2021, 12, 8583-8590.	2.1	12
6	A Martini Coarse Grained Model of Citrate-Capped Gold Nanoparticles Interacting with Lipid Bilayers. Journal of Chemical Theory and Computation, 2021, 17, 6597-6609.	2.3	22
7	Amphiphilic nanoparticles generate curvature in lipid membranes and shape liposome–liposome interfaces. Nanoscale, 2021, 13, 16879-16884.	2.8	13
8	Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. Nanoscale, 2020, 12, 19746-19759.	2.8	23
9	Water dynamics affects thermal transport at the surface of hydrophobic and hydrophilic irradiated nanoparticles. Nanoscale Advances, 2020, 2, 3181-3190.	2.2	11
10	Structure and orientation effects in the coalescence of Au clusters. Nanoscale, 2020, 12, 7688-7699.	2.8	28
11	Size-dependent aggregation of hydrophobic nanoparticles in lipid membranes. Nanoscale, 2020, 12, 9452-9461.	2.8	13
12	Role of Ligand Conformation on Nanoparticle–Protein Interactions. Journal of Physical Chemistry B, 2019, 123, 1764-1769.	1.2	23
13	Anionic nanoparticle-lipid membrane interactions: the protonation of anionic ligands at the membrane surface reduces membrane disruption. RSC Advances, 2019, 9, 13992-13997.	1.7	17
14	A Martini coarse-grained model of the calcein fluorescent dye. Journal Physics D: Applied Physics, 2018, 51, 384002.	1.3	20
15	Transferable MARTINI Model of Poly(ethylene Oxide). Journal of Physical Chemistry B, 2018, 122, 7436-7449.	1.2	99
16	Combining shape-changing with exchange moves in the optimization of nanoalloys. Computational and Theoretical Chemistry, 2017, 1107, 66-73.	1.1	35
17	Au Nanoparticles in Lipid Bilayers: A Comparison between Atomistic and Coarse-Grained Models. Journal of Physical Chemistry C, 2017, 121, 10927-10935.	1.5	61
18	Interaction of hydrophobic polymers with model lipid bilayers. Scientific Reports, 2017, 7, 6357.	1.6	56

#	Article	IF	Citations
19	Local Enhancement of Lipid Membrane Permeability Induced by Irradiated Gold Nanoparticles. ACS Nano, 2017, 11, 12553-12561.	7.3	30
20	Gold nanoparticles in model biological membranes: A computational perspective. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2380-2389.	1.4	67
21	Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles. Advances in Physics: X, 2016, 1, 276-296.	1.5	21
22	Structures and segregation patterns of Ag–Cu and Ag–Ni nanoalloys adsorbed on MgO(0 0 1). Journal of Physics Condensed Matter, 2016, 28, 064005.	0.7	23
23	Calculating the free energy of transfer of small solutes into a model lipid membrane: Comparison between metadynamics and umbrella sampling. Journal of Chemical Physics, 2015, 143, 144108.	1.2	57
24	MARTINI Coarse-Grained Models of Polyethylene and Polypropylene. Journal of Physical Chemistry B, 2015, 119, 8209-8216.	1.2	82
25	Metastability of the atomic structures of size-selected gold nanoparticles. Nanoscale, 2015, 7, 6498-6503.	2.8	94
26	Monolayer-Protected Anionic Au Nanoparticles Walk into Lipid Membranes Step by Step. Journal of Physical Chemistry Letters, 2015, 6, 3175-3179.	2.1	79
27	Hydrophobic Compounds Reshape Membrane Domains. PLoS Computational Biology, 2014, 10, e1003873.	1.5	58
28	Modeling the effect of nano-sized polymer particles on the properties of lipid membranes. Journal of Physics Condensed Matter, 2014, 26, 503101.	0.7	34
29	Lipid Membranes as Solvents for Carbon Nanoparticles. Physical Review Letters, 2014, 112, 068102.	2.9	61
30	Polystyrene Nanoparticles Perturb Lipid Membranes. Journal of Physical Chemistry Letters, 2014, 5, 241-246.	2.1	266
31	Chemical ordering in magic-size Ag–Pd nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 26478-26484.	1.3	28
32	Tuning the Structure of Nanoparticles by Small Concentrations of Impurities. Chemistry of Materials, 2014, 26, 3354-3356.	3.2	44
33	Partitioning and solubility of C ₆₀ fullerene in lipid membranes. Physica Scripta, 2013, 87, 058503.	1.2	21
34	Modeling self-organization of thin strained metallic overlayers from atomic to micron scales. Physical Review B, 2013, 88, .	1.1	12
35	Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2013, 9, 3282-3292.	2.3	67
36	Dynamic Heterogeneity in Random and Gradient Copolymers: A Computational Investigation. Macromolecules, 2013, 46, 5066-5079.	2.2	32

#	Article	IF	Citations
37	Patterning of Heteroepitaxial Overlayers from Nano to Micron Scales. Physical Review Letters, 2012, 108, 226102.	2.9	54
38	Molecular Dynamics Study of a MARTINI Coarse-Grained Polystyrene Brush in Good Solvent: Structure and Dynamics. Macromolecules, 2012, 45, 563-571.	2.2	30
39	Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. Journal of Chemical Physics, 2012, 137, 214901.	1.2	77
40	A Coarse-Grained MARTINI Model of Polyethylene Glycol and of Polyoxyethylene Alkyl Ether Surfactants. Journal of Physical Chemistry B, 2012, 116, 14353-14362.	1.2	90
41	Correlations between mechanical, structural, and dynamical properties of polymer nanocomposites. Physical Review E, 2012, 85, 041803.	0.8	35
42	A MARTINI Coarse-Grained Model of a Thermoset Polyester Coating. Macromolecules, 2011, 44, 6198-6208.	2.2	66
43	Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter, 2011, 7, 698-708.	1.2	216
44	Structures of AgPd nanoclusters adsorbed on MgO(100): A computational study. Surface Science, 2011, 605, 483-488.	0.8	24
45	Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes. Physical Review B, 2010, 81 , .	1.1	13
46	Exotic Supported CoPt Nanostructures: From Clusters to Wires. Journal of Physical Chemistry Letters, 2010, 1, 111-115.	2.1	41
47	Prediction of the structures of free and oxide-supported nanoparticles by means of atomistic approaches: the benchmark case of nickel clusters. Physical Chemistry Chemical Physics, 2010, 12, 8564.	1.3	11
48	Structures of gas-phase Ag–Pd nanoclusters: A computational study. Journal of Chemical Physics, 2010, 132, 234703.	1.2	44
49	Canonical molecular dynamics simulations for crystallization of metallic nanodroplets on MgO(100). Physical Review B, 2009, 79, .	1.1	8
50	Structures of metal nanoparticles adsorbed on MgO(001). II. Pt and Pd. Journal of Chemical Physics, 2009, 130, 174703.	1.2	48
51	Formation Pathways and Energetic Stability of Icosahedral Ag _{shell} Co _{core} Nanoclusters. Journal of Computational and Theoretical Nanoscience, 2009, 6, 841-848.	0.4	27
52	Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. Journal of Physics Condensed Matter, 2009, 21, 084208.	0.7	102
53	Structures of metal nanoparticles adsorbed on MgO(001). I. Ag and Au. Journal of Chemical Physics, 2009, 130, 174702.	1.2	75
54	Structure and chemical ordering in CoPt nanoalloys. Faraday Discussions, 2008, 138, 193-210.	1.6	109

#	Article	IF	Citations
55	Global optimisation and growth simulation of AuCu clusters. Faraday Discussions, 2008, 138, 49-58.	1.6	47
56	Interface-Stabilized Phases of Metal-on-Oxide Nanodots. ACS Nano, 2008, 2, 1849-1856.	7.3	58
57	Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Physical Review B, 2008, 77, .	1.1	75
58	Freezing of gold nanoclusters into poly-decahedral structures. Nanotechnology, 2007, 18, 225706.	1.3	53
59	Epitaxy, Truncations, and Overhangs in Palladium Nanoclusters Adsorbed on MgO(001). Physical Review Letters, 2007, 98, 156101.	2.9	38
60	Chapter 2 Structural properties of pure and binary nanoclusters investigated by computer simulations. Theoretical and Computational Chemistry, 2007, , 35-58.	0.2	0
61	Structure, Melting, and Thermal Stability of 55 Atom Agâ^'Au Nanoalloys. Journal of Physical Chemistry C, 2007, 111, 9157-9165.	1.5	76
62	Theoretical study of structure and segregation in 38-atom Ag-Au nanoalloys. European Physical Journal D, 2007, 43, 53-56.	0.6	35
63	Global Optimization Study of Small (10 â‰훠≤20) Pd Clusters Supported on MgO(100). Journal of Physical Chemistry B, 2006, 110, 7436-7442.	1.2	21
64	Electronic and Structural Shell Closure in AgCu and AuCu Nanoclusters. Journal of Physical Chemistry B, 2006, 110, 23197-23203.	1.2	90
65	Global optimization by excitable walkers. Chemical Physics Letters, 2006, 423, 17-22.	1.2	69
66	Quantum effects on the structure of pure and binary metallic nanoclusters. Physical Review B, 2005, 72, .	1.1	174
67	Global optimization of bimetallic cluster structures. I. Size-mismatched Ag–Cu, Ag–Ni, and Au–Cu systems. Journal of Chemical Physics, 2005, 122, 194308.	1.2	307
68	Global optimization of bimetallic cluster structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems. Journal of Chemical Physics, 2005, 122, 194309.	1.2	192
69	Single Impurity Effect on the Melting of Nanoclusters. Physical Review Letters, 2005, 95, 035501.	2.9	182
70	Melting of metallic nanoclusters: Alloying and support effects. European Journal of Control, 2005, 30, 303-313.	1.6	4
71	Dynamical effects in the formation of magic cluster structures. Physical Review B, 2004, 69, .	1.1	64
72	Growth and energetic stability of AgNi core–shell clusters. Surface Science, 2004, 566-568, 192-196.	0.8	66

#	Article	IF	CITATIONS
73	Magic Polyicosahedral Core-Shell Clusters. Physical Review Letters, 2004, 93, 105503.	2.9	361